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ABSTRACT
Autonomous experimentation systems use algorithms and data from prior experiments to select and perform new experiments in order to
meet a specified objective. In most experimental chemistry situations, there is a limited set of prior historical data available, and acquiring
new data may be expensive and time consuming, which places constraints on machine learning methods. Active learning methods prioritize
new experiment selection by using machine learning model uncertainty and predicted outcomes. Meta-learning methods attempt to construct
models that can learn quickly with a limited set of data for a new task. In this paper, we applied the model-agnostic meta-learning (MAML)
model and the Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning (PLATIPUS) approach, which
extends MAML to active learning, to the problem of halide perovskite growth by inverse temperature crystallization. Using a dataset of
1870 reactions conducted using 19 different organoammonium lead iodide systems, we determined the optimal strategies for incorporating
historical data into active and meta-learning models to predict reaction compositions that result in crystals. We then evaluated the best three
algorithms (PLATIPUS and active-learning k-nearest neighbor and decision tree algorithms) with four new chemical systems in experimental
laboratory tests. With a fixed budget of 20 experiments, PLATIPUS makes superior predictions of reaction outcomes compared to other
active-learning algorithms and a random baseline.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076636

I. INTRODUCTION

Materials discovery can be accelerated by combining simu-
lations, machine-learning, and automation.1,2 Autonomous exper-
imentation systems, in which algorithms specify an iterative
sequence of new experiments based on incoming results without
human intervention, have been the subject of recent reviews.3–6

Autonomous experimentation systems have been demonstrated for
a variety of materials optimizations problems, including carbon
nanotube growth,7,8 additive manufacturing,9 colloidal nanopar-
ticle syntheses,10–12 thin-film devices,13 photocatalyst synthesis

and characterization,14 alloy phase mapping,15 and optimization of
battery electrolyte compositions.16

Metal halide perovskites are a promising class of materials
for next-generation photovoltaic and optoelectronic devices.17

The ability to incorporate different organic cations results in a
vast, chemically diverse space to explore.18 The relatively mild
solution-based syntheses for these materials make them amenable
to high-throughput automated experimentation.19 Some examples
include antisolvent precipitation of polycrystals,20,21 antisolvent
vapor diffusion,22,23 perovskite thin films,13,24–26 and production of
nanocrystals under batch27,28 and flow10 conditions.
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We previously described our Robot Accelerated Perovskite
Investigation and Discovery (RAPID) system for performing high-
throughput inverse temperature crystallization (ITC) growth of
halide perovskites.29 RAPID has collected data on 14 838 reactions
(and counting), spanning 56 organic cations and 3 solvents, a sub-
set of which is used in this study. RAPID has been used to assess
and demonstrate data-driven approaches to experimental tasks,
including model fusion strategies for automating quality control
of high-throughput data30 and statistical analyses of uncontrolled
variations in laboratory conditions to identify the role of humid-
ity in reaction outcomes.31 Machine learning (ML) models trained
on 96 randomly selected experiments within a chemical system
can interpolatively predict subsequent outcomes in that system.29

By augmenting the dataset to include molecular and solution
physicochemical features, extrapolative prediction of reaction out-
comes for new chemical systems (i.e., when the protonated organic
amine is changed) has ∼40% precision on average but with large
variations.32 While better than random experiment selection (∼25%
precision), this suggests the need for improved algorithms. As any
set of descriptors may not capture all interactions specific to a par-
ticular molecular species, this suggests the need for better algorithms
that can learn the specific attributes of a chemical system from a
limited set of new experiments.

Experiment selection algorithms, such as active learning (AL)
algorithms, are a central part of autonomous experimentation
systems and have been summarized in several recent reviews.3,21

Active learning (AL) methods have ML algorithms that iteratively
request new data-points during training. Requested data are pri-
oritized by specifying a policy that balances exploration (reducing
model uncertainty) and exploitation (requesting new points with
a high value according to the existing model). This transforms
the model training into a sequential learning process, in which
each new experimental datum is incorporated into the model,
and this improved model is used to request the next experiment.
Active learning has been widely adopted in molecular simula-
tions and the construction of ML models on computational data.
Notable examples include determination of phase diagrams,33

parameterization of ML force fields,34 design of organometallic
complexes,35 and computational searches for CO2 electrocatalytic
alloys.36 Notable demonstrations of active learning in the laboratory
setting include determining the reaction conditions for polyoxomet-
alate crystallization,37,38 antisolvent vapor diffusion syntheses of
halide perovskites,22,23 electrocatalytic alloys for oxygen evolution
reactions,39 alloy phase mapping,15 neutron scattering determina-
tions of magnetic properties,40 determination of material property
curves,41 and battery electrolyte optimization.16 Active learning is
typically framed in the context of parameterizing a single model
applicable to the entire problem domain. Our previous work sug-
gests that it may be more effective to consider each chemical
system as comprising a distinct problem domain with its own
ML model. The naïve strategy of performing an active learning
parameterization ab initio for each system would not make use
of the valuable information contained in previous experimental
data.

Transfer learning uses information from one problem (i.e.,
chemical system) to solve a different but related problem. The
premise is that the model will have already learned fundamental

representations and the general structure of the task. Therefore,
by starting with a model pretrained on the previous system, a
smaller amount of data on the new system is needed to fine tune
those previously learned characteristics. Applications in compu-
tational chemistry include parameterization of ML forcefields,34

in silico drug discovery,42 and efficient metadynamics sampling in
protein molecular dynamics simulations.43 Applications to chemical
experimentation are more limited, but examples include tandem
mass spec proteomics (with a task transfer from unmodified to
post-translationally modified proteins),44 defect identification in
silicon CMOS devices (with a task transfer between transistor gate
geometries),45 and bandgap and catalytic activation energy pre-
diction [with transfer between density functional theory (DFT)
prediction results and experimental values].46

Meta-learning is a form of transfer learning in which ML
models are constructed to minimize the loss functions and are eval-
uated on their ability to “learn how to learn” when presented with
data in a new domain (or “task”).47 In practice, this results in an
initial model that is parameterized to describe a generic case but,
more importantly, focuses data acquisition during the sequential
learning phase such that it rapidly converges for the system at hand.
Applications of meta-learning in chemistry have largely focused on
in silico drug design tasks, namely, determination of quanti-
tative structure activity relationships (QSAR),48,49 identification
of potential drug–drug interactions,50 and ligand optimization.51

Other applications of meta-learning in chemistry include RNA
design,52 soot density recognition in combustion,53 gas adsorp-
tion in nanoporous materials,54 and interatomic potential fitting.55

Barrett and White56 used active meta-learning for the in silico iter-
ative peptide design using the Reptile57 meta-model. The authors
presented the results of using random sampling and uncertainty
minimization functions with active meta-learning methods. While
meta-learning was found to be effective in that context, the benefits
of active meta-learning were inconsistent.

In this paper, we apply model-agnostic meta-learning
(MAML)58 to the problem of metal halide perovskite crystal
growth. We consider each chemical system as a new task and
determine the viability of this approach for few-shot meta-learning
suitable for laboratory experimentation at an early stage in the
discovery process where the goal is to identify conditions that
result in crystal formation. As performing experiments is costly and
time-consuming, we use active learning to best iteratively improve
the per-task (per-amine) models. To do this, we apply a MAML
variant that allows the determination of prediction probabilities
of each outcome, specifically the Probabilistic LATent model
for Incorporating Priors and Uncertainty in few-Shot learning
(PLATIPUS).59 We describe computational studies using historical
data to assess the benefits of an active meta-learning approach
relative to “mere” active learning approaches and develop an
appropriate training and validation procedure for applying these
methods to laboratory tasks. In addition to evaluating the results on
time-held out data, we also performed a laboratory experimental test
on previously unseen systems. Statistical analysis of the laboratory
results demonstrates that the PLATIPUS active meta-learning
technique is more successful in predicting the outcomes of new
experiments that traditional active learning methods or random
experiment selection.
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II. METHODS
A. Theory: MAML and PLATIPUS

The goal of meta-learning is to train a model that can quickly
adapt to new tasks using only a few data points and iterations.
MAML formulates this problem in a model-agnostic way by adding
a gradient-based learning rule (in addition to whatever other loss
function is present) that prefers model parameters that are sensitive
to changes in the task. By doing so, small changes in the parame-
ters produce large improvements on the loss function of any task
drawn from a distribution of possible example tasks when altered
in the direction of the gradient of that loss.58 Consider a model fθ
with parameters θ. When applied to a new task, Ti, the model’s
parameters should be updated from θ to θ′i . This can be formal-
ized by considering the update in terms of a gradient descent on
task Ti,

θ′i = θ − α∇θLTi( fθ), (1)

where α is a step size and L is the user-specified loss function
evaluated on task Ti using model fθ. We can see from this why
this is a model-agnostic approach—it is applicable to any model, fθ,
for which we can compute gradients of any loss function L. Model
parameters are trained by optimizing for the performance of fθ′i with
respect to θ across tasks sampled from the distribution of possible
tasks, p(T), by optimizing a meta-objective,

minθ ∑
Ti∼p(T)

LTi( fθ−α∇θLTi ( fθ)). (2)

Minimizing this meta-objective also requires a gradient, and so we
note that this requires the gradient of a gradient to update θi. In
practice, this meta-optimization is also solved by stochastic gradient
descent.

MAML can quickly adapt to a new task by training on a handful
of samples from that task but lacks the ability to provide uncertainty
for predicted samples. Even with the best possible prior, MAML
cannot determine whether there is enough information in the small
set of samples to resolve the new task with high certainty. PLATIPUS
is one such method that can propose multiple solutions to an
ambiguous few-shot problem. Evaluating this uncertainty, we can
perform active learning by providing the models with labels to
samples with highest uncertainty.

PLATIPUS59 extends MAML to model a distribution over prior
model parameters. This is done by initializing a distribution over
model parameters Θ. The distribution is generated using average
model parameters μθ, variance of model parameters γ2

θ, learned
diagonal covariance vq, and two learning rate vectors γp and γq.
The algorithm assumes the distribution of model parameters to be
a normal distribution,

Θ ∶= {μθ, γ2
θ, vq, γp, γq}. (3)

During training, PLATIPUS, like MAML, samples a task Ti
from a distribution of tasks along with some task specific train-
ing (Dtrain

Ti
) and testing (Dtest

Ti
) data. Unlike MAML, however,

PLATIPUS updates the mean model parameters using the task
specific testing data, Dtest

Ti
, first. From the updated mean parame-

ters, a model is then sampled from the inferred distribution q. This
sampled model is optimized by using gradient descent on the sam-
pled task’s training data. After all the sampled models have been
optimized, the algorithm calculates the prior p of the mean model
parameters by only using the training data Dtrain

Ti
. Finally, meta-

model parameters are updated using the following meta-objective:

minΘ ∑
Ti∼(T)

LTi( fθ−α∇θLTi ( fθ)) +DKL(q(θ∣Dtest
Ti )∥p(θ∣D

train
Ti )), (4)

where DKL is the Kullback–Leibler divergence loss term, which mea-
sures the information lost if the model was trained on the testing
data (posterior q), also considered the true distribution of data,
compared to the model trained on the training data (prior p). Mini-
mizing this term ensures that the hyper-parameters perform equally
well on meta-training and meta-testing data.

In the testing phase, when a new task is introduced to the
model, the algorithm samples several sets of model parameters from
the distribution Θ. Next, it performs gradient descent on all sets of
parameters to obtain multiple task specific models. These trained
models can be used to make predictions where the uncertainty is the
difference in the predicted probabilities between sampled models.

In this study, both the MAML and PLATIPUS models use neu-
ral networks with three hidden layers. The hidden nodes, training
rates, and other hyper-parameters are presented in Tables S-2 and
S-3 in the supplementary material.

B. Problem summary
Given input information about reactant properties (physical

properties and descriptors) and reaction conditions (concentrations,
temperature, etc.) we want to predict the reaction outcome (forma-
tion of a crystalline product). As a specific example, we consider the
growth of metal halide perovskite crystals via the inverse tempera-
ture crystallization (ITC) route using lead iodide, an organoammo-
nium cation (which for brevity we refer to as the amine), and formic
acid. In this work, a “successful” reaction is the formation of a large
single-crystalline product. This is a chemically meaningful outcome,
as producing a large, high-quality single crystal is a prerequisite
for some subsequent characterizations, such as single-crystal x-ray
structure determination or electrical measurements. We define a
task in terms of a specific choice of reagents, and the goal of this task
is to predict the reaction outcome, given the concentrations of the
species as input or find input concentrations that achieve a desired
outcome. In the present study, a task comprises of the selection of an
amine. All other reagent identities are fixed. As such, we will use task
and amine interchangeably, although, in principle, it could be a set of
reagents.

In practice, different types of data may be available with which
to build a predictive model. We consider cases where one has access
to information about previous, historical tasks (historical only),
limited information about the current task (amine only), or both
(historical + amine). Additionally, we consider cases where the prior
information about the current task may be a random sample or
directed by an active learning (AL) strategy. For each of these types
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of data resources, we will consider different model types (to provide
a baseline against which to compare MAML and PLATIPUS), tuning
hyperparameters as necessary. Ultimately, success will be evaluated
both by numerical experiments (performed by backtesting on
previously obtained data) as well as on new laboratory experiments.
In Sec. II C, we describe the process by which we determined the
best types of training data and model types and prioritized methods
to test in the experimental laboratory.

C. Overview of the model training
and evaluation process

Figure 1 depicts an overview of the numerical and laboratory
experimental campaign designed for this study. The campaign is
split into three phases: (1) validation, (2) hold-out testing, and (3)
in-lab testing. During the validation phase, we evaluated a number
of models and performed baseline development with existing data.
To establish a baseline, we considered standard machine learning
models: k-nearest neighbors (KNN), decision trees (DT), support
vector machines (SVM), logistic regression (LR), gradient boosted
trees (GBT), and random forest (RF) models, along with the
MAML58 and PLATIPUS59 meta-models. Throughout, our goal was
to ensure a fair comparison across models so that models always
had access to the same data. This first phase focused on training and
validation on historical data from perovskite experiments across 16
amines so as to determine the best set of hyperparameters across a
wide variety of models and training strategies.

In the hold-out testing phase, the best models (and opti-
mized hyperparameters) determined during the validation phase

were evaluated on three held-out amines in our dataset. The goal
of this second phase was to identify the best models to advance
to the final laboratory testing phase. The goal of the third phase
was to evaluate the model performance, in an actual laboratory
setting, on a new system with the ability to request experiments.
Each model received the same initial set of random starting
data, requested its own desired experiments, and then attempted
to predict successful outcomes which were then validated. This
process was repeated twice for each of four previously unknown
chemical systems (constituting a time-separated laboratory test).
Below we describe the datasets, models, the training and valida-
tion conducted in each phase, and the laboratory experimentation
methodology.

D. Datasets
The data were obtained using the Robot-Accelerated Perovskite

Investigation and Discovery (RAPID) system discussed in our pre-
vious work.29 Each data item describes an inverse-temperature
crystallization (ITC) metal halide perovskite synthesis through
the inclusion of concentrations of lead iodide, formic acid, and
an organoammonium cation (which for brevity we refer to as
the amine), other reaction conditions (such as temperature), and
outcomes. We considered only experiments conducted at 95 ○C,
only those where the concentrations were chosen uniformly over
the achievable convex hull of possible compositions,60 and for which
at least one successful outcome was observed. Of the 20 amines
satisfying this criteria in the historical data, 16 amines (and all
experimental data using those amines) were selected randomly for

FIG. 1. Experimental campaign overview.
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cross-validation experiments, three amines were selected randomly
for hold-out testing, and one amine (dimethylammonium iodide)
was held out to be used as part of the phase three laboratory test
experiments. In addition, we acquired a uniformly sampled (in con-
centration) baseline for three additional amines for which we had
no previous data in order to demonstrate the resulting models on
a true time-separated hold-out set. Table I summarizes the amines
included in each phase of the study and the number of experiments
from the historical dataset.

Each amine is used to separate the data into tasks for the devel-
oped meta-learning models. The ESCALATE software was used
to append stoichiometric and physicochemical descriptors from
the raw record of reaction conditions and amine structure.32 In
total, each experiment is described by 50 input features: 28 molec-
ular descriptors (number of atoms, rotatable bond counts, etc.),
7 reaction conditions (temperature, concentration, etc.), and 15 sto-
ichiometric descriptors. The full list of included features can be
found in Table S-1. Numerical features in the dataset were scaled
to unit variance for training models. The mean and standard devia-
tion of the training data were used to scale the training set, samples
from the unseen amine, and the pool of potential experiments used

for active learning. The 44 numerical features in the dataset were
scaled using this process, while the six remaining binary features
were not.

To understand how closely tasks are related to each other, we
measured the pairwise correlation between different tasks in the
training and testing data in the hold out testing phase and laboratory
testing phase. Figure S-1 in the supplementary material shows the
average cosine similarity between experiments on amines in phase
1 vs phase 2, and Fig. S-3 shows the same metric between experi-
ments on amines in Phase 1 and 2 vs Phase 3. Additionally, we used
the Optimal Transport Dataset Distance (OTDD)61 metric that mea-
sures the notion of task similarity that is model agnostic, shown in
Figs. S-2 and S-4. The OTDD metric is based on the Earth mover’s
distance.62 Task pairs with low average cosine similarity or OTDD
indicate that they are more alike than pairs with a higher value.
For example, in the hold out testing set, two of the held out tasks,
n-butylamine and iso-butylamine, are closely related to 4-fluoro-
phenylamine in the training set, with cosine values 0.88 and 0.84 and
OTDD values 52.91 and 48.16, respectively, whereas the third held
out task, 4-trifluoromethyl-phenylamine, has a higher cosine simi-
larity and OTDD value of 1.19 and 112.19, respectively, indicating

TABLE I. Per-amine data statistics for all experimental phases.

Number of Number of Fraction of
Amine chemical name samples samples samples

Cyclohexylmethylamine 96 60 0.62
Phenylamine 96 29 0.30
t-Butylamine 96 19 0.20
4-Fluoro-benzylamine 96 18 0.19
N,N-Dimethylpropane-1,3-diamine 96 16 0.17
Methylamine 32 4 0.13
Morpholine 96 11 0.12
4-Fluoro-phenylamine 71 8 0.11
Cyclohexylamine 96 9 0.10
n-Hexylamine 96 8 0.09
Piperidine 156 11 0.07
Propane-1,3-diamine 81 5 0.07
N,N-Diethylpropane-1,3-diamine 96 4 0.05
N,N-Diethylethane-1,2-diamine 96 1 0.02
Ethylamine 81 1 0.01
Butane-1,4-diamine 96 1 0.01

Hold-out testing data

iso-Butylamine 35 10 0.29
n-Butylamine 42 5 0.12
4-Trifluoromethyl-phenylamine 72 8 0.11

Time-separated hold-out live laboratory experimentation data

4-Hydroxyphenethylamine 96 45 0.47
4-Chlorophenethylamine 96 27 0.28
4-Chlorophenylamine 96 19 0.20
Dimethylamine 95 15 0.16
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FIG. 2. Representative crystal outcomes for dimethylamine. A crystal score of “4” is considered a successful reaction outcome. Scale bar indicates centimeters. (a) Score
1: clear solution, (b) score 2: fine powder, (c) score 3: small crystallites, and (d) score 4: large crystals.

that this task is not as closely related to 4-fluoro-phenylamine. The
two metrics do not agree on task relatedness for all amine pairs but
indicate trends in relative task similarities.

Experimental outcomes are scored into four classes: (1) no solid
observed in the solution, (2) fine powder observed, (3) small crystals
observed, and (4) large crystals observed (>0.1 mm), as used in
previous work.29,63,64 Figure 2 shows representative crystal outcomes
for each of these classes of dimethylamine reactions, and Table S-4
shows representative images of the new syntheses performed for this
work. This type of reaction outcome is experimentally convenient
because it can be determined rapidly (and even automated using
computer vision approaches22), and producing crystals is a prereq-
uisite for much of the structural characterization used in materials
discovery, even if it does not reveal the composition of the final
product. In this study, the outcomes are represented as binary val-
ues for the machine learning classification task, with large (class 4)
crystals considered as successful (denoted as a classification out-
come of 1) and all other classes are considered as failed experiments
(classification outcome of 0). In general, the success rates of any
given amine (shown in the final column of Table I) is very low;
a randomly chosen experiment is more likely to fail than succeed
for all but one amine. Of the 23 included amines, 7 have success
rates less than 10% and another 11 have success rates between 10%
and 20%. Given this large class-imbalance, models will be evalu-
ated based on their balanced classification rate (BCR), as discussed
in Sec. II E. A machine readable copy of the dataset is available at
https://github.com/darkreactions/platipus/.

E. Phase 1: Model training
The training and model evaluation phase considers many

possible training paradigms and differently composed training
datasets. In addition to classic one-shot models, we will develop and
compare to meta-models and to active learning versions of both
one-shot and meta-models. The goal of these training procedures

is to evaluate all models against reasonable benchmarks, making
sure that the classical one-shot models have the same access to (and
advantage from), provided training data as active meta-models. This
makes direct comparisons of the value of active and meta-learning
approaches possible but requires a complicated description of the
data presented for each of the model variations. We describe this
below, as it is valuable for future studies and notational clarity, but
encourage the casual reader to skip to Sec. II F.

Each amine defines a meta-learning task; to mimic this, one-
shot models use training and testing splits where each amine is
in either training or testing, but not both. Meta-learning models
are given initial jump start data from a new task (an “unseen”
amine absent in the training data), comprised of k = 10 uniformly
randomly sampled reaction data for the new amine. We chose k to
be relatively small, as it represents the initial experimental data that
needs to be collected when performing a new task. To create reason-
able benchmarks, one-shot models are also given access to the same
initial k = 10 jump start reactions for the new amine. Active learn-
ing models request x = 10 additional samples from the new amine
in an iterative fashion; again, this low value of x was chosen so as to
be feasible for non-automated experimentation. Non-active learned
models will also have access to x = 10 additional experimental data
points chosen uniformly at random from the new amine. During
phases 1 and 2 (model validation and hold-out testing), the iterative
experiment requests are chosen from the pool of archived experi-
mental data. During phase 3, they are selected from a much larger
stateset comprised of a grid of ∼200 000 possible concentrations of
lead, formic acid, and amine achievable with the stock solutions used
(the iodide concentration is implicit). To summarize, each model has
access to at most 20 samples from the new amine during its training
process.

To determine how best to incorporate historical data, different
combinations of historical training data and per-amine data were
used during model training, as summarized in Table II. One-shot
models were trained in the following ways: (i) historical only using
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TABLE II. Training datasets considered in this study.

k = 10 uniform random

20 randomly sampled points x = 10 actively sampled

Historical with or with at least with or with at least
Training strategy data w/o success 1 success w/o success 1 success

Historical only ✓
Amine only ✓
Amine only with success ✓
Historical + amine ✓ ✓
Amine only AL ✓
Amine only with success AL ✓
Historical + amine AL ✓ ✓

only historical data and no data from the unseen amine; (ii) amine
only using only k + x = 20 data sampled uniformly at random from
the unseen amine; (iii) amine only with success using only k + x = 20
data sampled uniformly from the historical data, but where this must
contain at least one successful experiment; (iv) historical + amine
using all available training data, i.e., all historical data in addition to
20 points sampled randomly from the unseen amine. Additionally,
active learning models were trained in the following ways: (v) Amine
only active learning using amine only data as above, where k = 10
are given as initial training data and x = 10 are queried iteratively
via active learning; (vi) Historical + amine active learning using all
previously available data, where k = 10 data points from the new
amine are added to the initial training set and x = 10 are queried
to refine the model via active learning.

To establish a performance baseline, we trained k-nearest
neighbor (KNN), random forest (RF), decision trees (DT), logis-
tic regression (LR), support vector machine (SVM), and gradient
boosted tree (GBT) models under the above data options. MAML
was trained under the historical and amine option and PLATIPUS
was trained under the historical + amine active learning option as
summarized in Table III. In the amine only strategy, the training set
contains 20 samples from the held out amine. Due to the unbalanced
nature of the outcomes, all 20 random samples may be failures. The

SVM, GBT, and LR models require at least one sample from each
class in its training data and thus can only be examined via the amine
only with success training option (and not the amine only version).

All models in this study use maximum uncertainty sampling to
request active learning queries. Uncertainty sampling is defined as

U(X) = 1 − P(X̂∣X), (5)

where P(X̂∣X) is the model’s estimated probability of the most likely
prediction X̂ of instance X. For each active learning step, the instance
X with the largest value of U(X) is selected as the next experiment
to be queried.

F. Phase 1: Model validation and baseline
development

In the first phase, all models were evaluated using a 16-fold
leave-one-amine-out cross validation i.e., trained on 15 amines and
validated on the remaining 1 amine. We take five different draws
of per-amine samples (either k = 10 for active learning models or
k + x = 20 samples for one-shot models) to test the models under
different starting conditions. Next, all active learning models request
the scores of x = 10 more experiments sequentially from the

TABLE III. Models considered in this study and data used to train them.

Historical Amine Amine only Historical Amine Amine only Historical
Model only only with success + amine only AL with success AL + amine AL

KNN ✓ ✓ ✓ ✓ ✓ ✓ ✓
RF ✓ ✓ ✓ ✓ ✓ ✓ ✓
DT ✓ ✓ ✓ ✓ ✓ ✓ ✓
LR ✓ ✓ ✓ ✓ ✓
SVM ✓ ✓ ✓ ✓ ✓
GBT ✓ ✓ ✓ ✓ ✓
MAML ✓
PLATIPUS ✓
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remaining (historical data) samples for that amine. Active learning
models update their uncertainty values before requesting a new
sample. Thus, each model trains on a total of 20 samples from the
held out amine. Models are evaluated by testing on all held out amine
samples in each fold. Accuracy statistics (recall, precision, accu-
racy, and balanced classification rate) are calculated by considering
the mean per-amine accuracy statistic over the five random draws
and taking the mean over all single amine cross-validation folds.
Given the large class imbalance in the dataset (see Table I), the
balanced classification rate (BCR) is the primary performance
metric, defined as

BCR = 1
2
( TP

TP + FN
+ TN

TN + FP
), (6)

where TP, TN, FP, and FN are the number of true positive, true
negative, false positive, and false negative classification outcomes,
respectively. For non-active learning models, the BCR is used
directly, while for active learning models, the BCR is calculated
at each step of the active learning process and the area under the
BCR curve (BCR AUC) is used to measure the rate of improve-
ment. All model hyperparameters and model architecture choices
listed in Table S-2 are evaluated based on the BCR or area under
the BCR curve (for non-active learning or active learning models,
respectively).

G. Phase 2: Hold out testing
The hyperparameters that provide the best results in the model

validation phase for each model type and training strategy are fixed
for use in hold-out testing; those finalized hyperparameters are
shown in Table S-3. During this phase, models are trained with all
16 amines used in the validation phase. Trained models are then
tested on three held out amines, as indicated in Table I. Similar to
the model validation phase, we take five different draws of per-amine
samples to test the models under different starting conditions. Mod-
els that perform well in this phase under each training strategy are
selected to be used in the final evaluation. Phase 2 verifies the phase
1 training and testing process and serves as the qualifying round that
determines which models advance to laboratory experimentation.

H. Phase 3: Testing model performance
in the laboratory

For each of the four amines used in the laboratory testing
phase, we acquired 96 experiments sampling the concentrations
uniformly in the achievable three-dimensional composition space
(lead, formic acid, and amine). Next, two draws of x = 10 experi-
ments were selected using uniform random sampling from this pool
and used to jump start the models. Models requested k = 10 addi-
tional experiments sequentially from the stateset of possible achiev-
able compositions for the amine. Because only one experiment
is requested by each model at a time, the requested experiments
were dispensed by manual pipetting, but otherwise follow the same
experimental process described below. At the conclusion of the
experiment, the results were returned to the models. Each ITC
experiment requires ∼4 h to complete, allowing for two active
learning rounds per amine per day. At the conclusion of the
x + k = 20 data points, each fully trained model selected the top nine

experiments with the highest probability of yielding a large single
crystal (class 4) outcome and these experiments were conducted in
the laboratory using the liquid handler robot.

I. Phase 3: Experimental method
The experimental procedure for the high-throughput inverse

temperature crystallization (ITC) synthesis of metal halide per-
ovskite single crystals is described in our previous work.29 In brief,
a Hamilton Microlab NIMBUS automatic liquid handler robot
pipettes four different types of stock solutions into glass vials on a
96-well microplate. These stock solutions consist of (a) lead (II)
iodide and the selected organoammonium iodide in solvent, (b)
organoammonium iodide in solvent, (c) neat solvent [dimethylfor-
mamide (DMF)] was used for all reactions described in this work),
and (d) neat formic acid. The liquid handling robot dispenses the
reagent stock solutions into pre-heated (70 ○C) glass vials placed in
a 96 well microplate. The plate is vortexed for 35 min to ensure
the proper mixing of stock solutions. The robot then heats the
microplates (to a nominal setting of 105 ○C, which we measured
as 95 ○C by IR thermometry) without vortexing for 150 min to
allow for crystal growth. The reaction outcome is scored by visual
inspection into the four outcome classes described above. Figure 2
shows the representative crystal outcomes for dimethylamine, where
outcomes with score 4 are considered successful. Table S-4 pro-
vides representative images for all the amines tested during the
phase 3 laboratory experiments. The raw data file, contained in the
supplementary material, includes a description of the stock solu-
tion concentrations used for each experiment, as well as details of
the pipetting instructions, final compositions, and outcomes of each
reaction.

III. RESULTS AND DISCUSSION
A. Phase 1: Model validation

We benchmarked MAML and PLATIPUS performance against
other baseline models and training strategies by numerical back-
testing on archived data; the results are shown in Fig. 3. We first
define three (non-active, non-meta) baselines training schemes and
their results. The historical only training strategy provides a base-
line for how well models can predict the outcomes of reactions for
new amine tasks that have not previously been seen during training.
Such models do not perform well; the best performing model using
this historical only training strategy is k-nearest neighbors (indicated
as the teal bar with down-left stripes in Fig. 3), with an average BCR
value of 0.64.

The second baseline (amine only models) only has access to
limited data on the new unseen amine. The best performing mod-
els trained in this manner are worse than the best historical only
model (specifically, decision tree with an average BCR of 0.57,
indicated by the pink bar with down-right stripes in Fig. 3). As noted
in Sec. II, SVM, GBT, and LR require the training data to contain at
least one successful sample, and the imbalances seen in these experi-
ments often precludes this. To establish a baseline for these methods,
the amine only with success training scheme ensures that the training
data includes at least one success. This slightly improves the results
over the amine only version, but the best performing model is still
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FIG. 3. Cross-validation results showing the (a) balanced classification rate (BCR), (b) accuracy, (c) recall, and (d) precision for each training strategy averaged over all
folds and with five draws for each fold. Historical + amine active learning, emphhistorical + amine, historical only, and amine only training strategy results are shown for all
models. Error bars indicate the standard deviation of the average accuracy statistic across all amines (16 folds). Lines indicate the model with the highest average BCR for
its corresponding strategy. The large standard deviation for all models indicates large variability across amines.

poor; the DT model achieves a BCR of 0.58, indicated by the dotted
pink line in Fig. 3. Although all of these baselines are better than ran-
dom guessing (which would have a BCR value of 0.5), there is room
for improvement.

First, we assess the value of meta-learning on historical data and
compare it to simply adding historical data into the model. In gen-
eral, all models trained using the historical + amine data perform
better than those trained using only the historical data or only the
new amine data (lighter-shaded bars, in Fig. 3). This indicates the
value of combining both types of information when exploring a new
chemical system. However, the performance is still generally poor;

the best performing model among standard (non-meta-learning)
models is KNN, with a BCR of 0.67. In contrast, the MAML method,
using the historical data for meta-optimization and then training on
the small set of new amine data, yields better performance, with a
BCR of 0.74, indicating the value of meta-learning.

Applying an active learning scheme to the amine only or
historical + amine training results in a large improvement over the
non-actively learned equivalent model. Because one-shot models are
given access to an equivalent number (x = 10) of randomly sampled
data points, the appropriate comparison to the actively learned
models is at the x = 10 point on the right of the BCR plots in Fig. 4
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FIG. 4. Cross-validation results for the active learning models showing the number of active learning queries vs the average balanced classification rate (BCR) over
five draws for each fold, averaged over all folds. Accuracy, recall, and precision metrics are shown in Fig. S-6. Shown models are the best per training category after a
hyperparameter search. Solid lines in (a) represent the historical + amine training strategy, dashed lines in (b) are amine only with successes, and dotted lines in the (c) are
amine only with random selection.

graphs. The KNN, DT, and RF models learned with all available
data (historical + amine) all perform similarly well after ten active
learning queries, with a BCR between 0.67 and 0.7, and perform
better than the SVM, GBT, or LR equivalents. The amine only active
learning versions of KNN, DT, and RF similarly perform better than
the non-active learning versions (with BCRs between 0.64 and 0.71),
as does the amine only with success active learning for which GBT
performs best with a BCR of 0.74. Thus, the active learning pro-
cess improves the baseline models more than random sampling,
but the models’ performance is still not particularly strong. To
compare performance among active learning models, we calculate
the area under the curve (AUC) for the BCR values shown in Fig. 4.
The BCR AUC metric rewards models that improve at each step
of the active learning process and quantitatively differentiates BCR
curves.

The PLATIPUS results (indicated by green in Figs. 3–5)
demonstrate the value of active meta-learning. Even with only the
jump start data for the specific amine (the x = 0 point on the graphs
in Fig. 4), PLATIPUS already has a higher BCR than the other
actively learned models achieve after an additional x = 10 queries.
After ten active learning queries, the PLATIPUS model has a BCR
of 0.81, outperforming all other models considered. However, as the
standard deviation across amines is relatively large (0.1), even for the
best performing models, it is important to evaluate these models on
held out amines in the next phase.

B. Phase 2: Hold-out testing
The goal of this phase is to evaluate MAML and PLATIPUS

performance on unseen tasks so as to confirm the results discussed
in Sec. III A. This is needed for methodological rigor and to jus-
tify our selection of a subset of models for laboratory evaluation
but can be skipped by a casual reader. To evaluate the models on
fully unseen data, the models were tested on three amines held out
from the previous dataset (see Table I). Models were trained on

the entire set of 16 amines from the validation experimentation
phase using the previously determined optimal hyperparameters
(see Table S-3). Overall, the models perform better on the hold-out
test set than in the cross-validation evaluation. This is likely due to
the random choice of amines in the hold-out test set and not any
general improvement in the models. Thus, we will focus here mostly
on the relative performance of different model types and training
strategies.

Baseline models trained solely on the historical only and with no
data from the unseen amine again perform relatively poorly, though

FIG. 5. Cross-validation BCR AUC for the active learning strategies. PLATIPUS
has the highest BCR AUC among all models followed by KNN and DT using the
historical + amine training strategy. KNN with amine only has the highest BCR
AUC among the amine only models, but it is lower than KNN with the historical
+ amine strategy. SVM, GBT, and LR models could not be evaluated under the
amine only strategy since they require both outcome classes in their training data.
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in some cases as well or better than other options for a specific
model type, as shown in Fig. 6. Interestingly, the average BCR for
the DT models is much higher for the historical only training strat-
egy (0.78 ± 0.13) shown as a pink bar with down-left stripes, than
for the historical + amine strategy (0.68 ± 0.12), shown as the dotted
pink bar. However, the standard deviation of the BCR across the
three held-out amines is quite large. The models trained using amine
only perform similarly to or better than the models trained using
only historical only data. This is different from the pattern seen dur-
ing validation and indicates a lack of generalization of the baseline
models to these held-out amines. The models trained using the

amine only with success strategy are not consistently better or worse
than those trained using amine only data. Both training strategies
have large standard deviations in the BCR across amines, and the
variability across amine data may be more important to a model’s
ability to predict successfully than the initial sampling choice. The
amine only and amine only with success strategies perform rea-
sonably well without historical data, which suggests that these are
reasonable training strategies in the absence of a large historical
dataset.

The baseline models trained using all available data (historical
+ amine) again do not clearly dominate any of the other strategies

FIG. 6. Hold-out testing results showing active and non-active learning model accuracy statistics [(a) BCR, (b) accuracy, (c) recall, and (d) precision] averaged over three
held-out amines, each with initial data chosen from five random draws. Bars represent the historical + amine and historical + amine AL strategies. Error bars shown indicate
the standard deviation of the accuracy statistic over the three held-out amines. The best performing models for other training strategies are indicated using horizontal lines.
SVM, GBT, and LR models can only be trained with at least one successful reaction, so these models do not have results for all training strategies.
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FIG. 7. Hold-out testing results for the active learning models showing the number of active learning queries vs the average balanced classification rate (BCR) over five
draws for each amine, averaged over all amines. Accuracy, recall, and precision metrics are shown in Fig. S-11 in the supplementary materials. Solid lines in (a) represent
the historical + amine training strategy. Dotted lines in (b) represent amine only and dashed lines in (c) represent amine only with success training strategy. Models are
evaluated based on the BCR AUC (see Fig. 8), and KNN is the best performing model.

using those standard models. MAML performs on par with, but not
clearly dominating, the best of the other models, with an average
BCR of 0.79. The impact of active learning on the standard mod-
els is also inconsistent across the model and training strategy, with
some models and strategies increasing performance under active
learning and some decreasing. KNN performs the best with the
historical + amine strategy and active learning, but some weaker
models (RF, SVM, and GBT) under this training strategy have a BCR
of about 0.5, which is the performance of a random model. Analyz-
ing the active learning queries made by the KNN model revealed
that the model naïvely requests the first point in the list of remain-
ing experiments in the pool. Since this pool contains points that are
uniformly sampled throughout the statespace, any point selected will
improve the model performance (Fig. 7).

FIG. 8. Hold-out testing BCR AUC for the active learning strategies. KNN has the
highest BCR AUC among all models followed by PLATIPUS and DT using the
historical + amine training strategy.

While the validation evaluation showed PLATIPUS to be the
best of the evaluated models and training strategies, the performance
improvement is less clear on the hold-out testing set, as indicated
by the BCR (Fig. 7) and BCR AUC (Fig. 8). PLATIPUS seems to
perform similarly to the best standard models (KNN under varying
strategies), with a large standard deviation in BCR across held-out
amines. The large standard deviation can be explained by the fact
that all models, except for KNN, trained using the historical + amine
active learning strategy perform poorly for one of the three held
out tasks, specifically 4-trifluoromethyl-phenylamine, shown in
Fig. S-14. The BCR value of KNN is 0.63 at the end of jumpstart
training and the beginning of the active learning process which is on
par with other models, but rapidly increases in subsequent steps to
a BCR value of 0.83. This could suggest that KNN selected experi-
ments that improved model performance by chance, since as noted
before, KNN naïvely selects active learning experiments in the order
they are presented.

Additionally, the average OTDD of 4-trifluoromethyl-
phenylamine from the training set containing 16 amines is 174.37.
This distance is much higher than the average OTDD of the other
held out tasks, iso-butylamine and n-butylamine, whose values are
116.79 and 120.59, respectively. The relative difference in average
distances from the training dataset corresponds to the performance
of the PLATIPUS model on each amine, where PLATIPUS does not
perform well on the amine that is farther away from the training
dataset.

In order to test the developed models in a real world sce-
nario, the next phase of experimentation involves in-lab live active
learning, including laboratory testing of chosen queries. Real world
experiments require materials and labor, so we will limit our atten-
tion to the best active learning models to use as a baseline. Based
on the success of the KNN and DT models across both valida-
tion and hold-out testing, as well as the general success of the
historical + amine active learning training strategy, the in-lab
experimentation will include KNN and DT historical + amine active
learning models as well as PLATIPUS.
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Given the constraints of performing live laboratory experi-
ments on previously unused amines, it is also impractical to continue
using the amine only with success strategy; the goal in the live
laboratory experiments is to use a limited and fixed experimental
budget, which is incompatible with sampling until a success is
found. Furthermore, the validation and hold-out testing results
indicate that this strategy does not yield significant benefits in model
performance. Thus, keeping the same hyperparameters for each
model, we move forward to the next phase with an examination
of the KNN, DT, and PLATIPUS models using historical + amine
in-lab active learning and compare against a baseline of standard
models using different training strategies.

C. Phase 3: Laboratory evaluation

How well will MAML and PLATIPUS behave in a real lab-
oratory setting? A possible limitation of the previous numerical
backtesting results is that the active learning selections were limited
to choices among a subset of experiments. To assess the practi-
cal performance of these methods, each model was trained on the
historical data of 19 amines used in model validation and hold
out testing phases, provided with the same k = 10 jump start
data and allowed to request its own x = 10 additional experi-
ments from the state space of possible compositions, and then
evaluated on its ability to identify nine successful reaction

FIG. 9. Final phase testing results showing active and non-active learning model accuracy statistics [(a) BCR, (b) accuracy, (c) recall, and (d) precision] averaged over four
amines, each with initial data chosen from two random draws. Solid bars represent models trained using x = 10 benchtop experiments [historical + amine AL (in lab)],
dotted bars represent models trained using the historical + amine strategy, and bars with down-left and down-right stripes are trained using historical only and amine only
strategies, respectively.
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FIG. 10. Laboratory evaluation training results for the active learning models aver-
aged over two draws over four amines. (a) Active learning BCR and (b) average
BCR AUC. Error bars indicate standard deviation across the eight trials.

conditions for four new amines. The entire process is repeated
twice for each amine, using different randomly selected jump-
starts, to assess the dependence of model performance on initial
conditions.

Does active learning improve the model quality relative to
random experiment sampling in a new task? Figure 9 compares the
performance of all baseline standard and meta-models, training on
the same data available to the in-lab active learning models (using
the same historical and jump start data on the amine), and testing
using the high-throughput baseline data. The best results for the
non-active learning models tend to use historical + amine data
(except for KNN, which does better with amine only training), and
MAML has the best overall performance. Therefore, when active
learning is impractical, we recommend using MAML when histor-
ical data are available and KNN when it is not. However, using
active learning improves performance. Notably, the PLATIPUS
model dominates all other models with an average BCR of 0.81.
The DT model with active learning does better than DT with other
strategies, but KNN with active learning does worse than KNN with
historical + amine and amine only strategies. The PLATIPUS model
performs consistently well over all the tested amines as indicated
by a smaller standard deviation in BCR values. The average OTDD
values of the tested amines, namely, 4-hydroxyphenethylamine, 4-
chlorophenethylamine, 4-chlorophenylamine, and dimethylamine
are 144.36, 143.34, 134.18, and 128.68, respectively. We observe that
the OTDD values of these amines from the training dataset, con-
taining 20 amines, do not vary significantly. Unlike the hold-out
testing, the OTDD of 4-trifluoromethyl-phenylamine was signifi-
cantly larger. Although we selected the four amines in this phase
at random, a distance metric like OTDD can help in selecting
candidate amines. Candidates with large distance values from the
training set may not be suitable for exploration by meta-models like
PLATIPUS.

Similar to the behavior seen in the hold-out testing phase, KNN
naïvely selects points from the stateset in the order it is presented
to the model for laboratory evaluation. Consecutive experiments
presented to the model are close together in chemical space, which
limits the information it gains from the active experiment requests.
This explains why KNN performed best in the hold-out testing phase
as the model was presented with uniformly sampled experiments
that greatly improved model performance. Therefore, it is important
to test models in a laboratory setting as there may be hidden
factors influencing model performance that were not considered in
retrospective analyses.

TABLE IV. Summary of the laboratory evaluation results on predicting nine experimental outcomes.

Model PLATIPUS Decision Tree KNN

Fraction Number of Fraction Number of Fraction Number of
Amine Draw success successes success successes success successes

Dimethylamine 1 0.78 7 0.67 6 0.00 0
2 0.22 2 0.22 2 0.22 2

4-Chlorophenethyl-amine 1 0.55 5 0.11 1 0.00 0
2 0.89 8 0.22 2 0.00 0

4-Hydroxyphenethyl-amine 1 0.44 4 0.22 2 0.00 0
2 0.44 4 0.11 1 0.00 0

4-Chlorophenyl-amine 1 0.78 7 0.11 1 0.22 2
2 0.44 4 0.22 2 0.33 3
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How do the active learning models improve with each exper-
imental request? Figure 10(a) shows the BCR values at each step
of the active learning process averaged over both draws over four
amines, and Fig. 10(b) shows the BCR AUC of each model. In
addition to starting with an initially higher BCR, the experiment
selections by PLATIPUS increase the BCR more than active learn-
ing on the DT and KNN models. This demonstrates the value of
PLATIPUS for exploration.

How well can trained active learning models predict new
experiments? Table IV summarizes the actual experimental out-
comes observed for nine reaction that each model predicted to be
successful; this allows us to assess how well each model can be
used to exploit the information it has learned during the active
learning process. Large variations are observed between the dif-
ferent jump-start draws, which reflects the dependence on initial
data. However, in every case, PLATIPUS makes more successful
predictions than DT- and KNN-based active learning models. This
is evidence that regardless of the initial conditions, PLATIPUS
makes better use of its experimental requests than these other mod-
els to learn the relationship between the composition and reaction
outcome.

We quantify the prediction quality using a simple statisti-
cal approach. Suppose that each model is an oracle that makes
correct predictions with probability p, i.e., each experiment is a
Bernoulli trial. The number of successes m that occur in a batch of
n experiments is the binomial distribution. Given an observation of
m successes, we wish to determine the probability density function
(PDF) of p consistent with this outcome. This is merely the PDF of
the binomial distribution times the appropriate normalization factor
for n trials,

f (p) = (n + 1)(1 − p)n−mpm( n
m
). (7)

Readers familiar with Bayesian inference will recognize this as the
PDF of the beta distribution, Beta(α = m + 1, β = n −m + 1), which
is the conjugate prior of the binomial distribution. Equation (7) can
be used to assess each model’s predictions quality (peaks at higher
p) and uncertainty (width of the peak). To focus on each model’s
general performance, we combine the two draws together. Figure 11
plots the estimated PDF of p for each model for each amine; in each
case, there are n = 18 experiments and m is the sum of successes
reported in Table IV for the two draws. We also compare this to
the random baseline results for each amine (black line) using the
data from Table I. The random baseline distribution is narrower
because of the larger number of random baseline samples; the sta-
tistical treatment allows us to account for the uncertainty associated
with different numbers of experimental trials in a consistent way.
As depicted in Fig. 11, the PDF for PLATIPUS (green) is higher or
comparable to that of the other reference methods. This indicates
that PLATIPUS has a better maximum likelihood (p that maximizes
the PDF) of making successful reaction predictions than the other
approaches. However, one might also ask how the uncertainty in our
estimate might change this evaluation.

A useful way to approach decision making in uncertain
environments is to think in terms of bets.65 Consider a wager placed
on one of the two different models, with PDFs described by fA(p)
and fB(p). The integral of the joint PDF, which in this case is

FIG. 11. Probability density function (PDF) [Eq. (7)] of estimated model success
probability, p, for the KNN, DT, and PLATIPUS active learning models and random
baseline data. The distribution of p for PLATIPUS is better than or comparable to
all other contenders.

simply the product of the two independent PDFs, fA(pA) fB(pB)
for pA > pB,

gA>B = ∫
1

0
dpA ∫

pA

0
dpB fA(pA) fB(pB), (8)

indicates how often a bet on A is better than a bet on B. An illus-
trative example is shown in Fig. 12 using the example of dimethy-
lammonium iodide. In each inset, the PDF of each individual model
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FIG. 12. Illustrative examples of comparing joint probability density functions
(PDFs) to determine which model is a better choice for dimethylammonium iodide
reactions. The PDF for each model is shown as the colored lines on the axes,
and the joint PDF is depicted as a contour plot. The dotted diagonal line indi-
cates the bisectrix. (a) Comparison of PLATIPUS and random choice. The contour
sits below the bisectrix indicating PLATIPUS as the better bet. (b) Comparison of
PLATIPUS and the active decision tree model. The contour is more symmetrical
around bisectrix indicating equally good bets.

[taken from Fig. 11(a)] is shown in the margins, and the joint PDF
is depicted as a contour plot. The region below the dotted bisectrix
line is where pA > pB. The integral gA>B is larger when more of the
joint PDF sits below this bisectrix. For example, the joint PDF of
the PLATIPUS and random sampling schemes [Fig. 12(a)] is mostly
below the bisectrix, indicating that the PLATIPUS model (“A”) is
typically more successful than the random model (“B”), as gA>B is
closer to 1. In contrast, the difference between the PLATIPUS and
DT PDFs is not as pronounced, and as a result, the joint PDF is more
symmetrical about the bisectrix [Fig. 12(b)]. As a result, gA>B will be
closer to 0.5, indicating that these are equally good bets. (As an aside,
this is the same reasoning used to justify the Thompson sampling
heuristic for the multi-arm bandit problem.66)

TABLE V. Estimation of which model is more likely to be successful by integration
of Eq. (8).

Amine gP>KNN gP>DT gP>Rand gDT>Rand

Dimethylamine 0.994 0.627 0.999 0.996
4-Chlorophenylamine 0.976 0.997 1.00 0.451
4-Chlorophenethylamine 1.00 1.00 1.00 0.188
4-Hydroxyphenethylamine 0.999 0.961 0.433 0.009

Equation (8) can be evaluated analytically, resulting in a ratio-
nal fraction for each value of gA>B (see the supplementary material).
As the results are somewhat unwieldy, Table V shows the decimal
truncation, with a comparison of PLATIPUS (P) to the KNN and
DT active learning methods and against the random baseline; As
noted above, gA>B values closest to 1 indicate that it is almost cer-
tain that model A will have a superior outcome, and values of
0.5 indicate that each model has an equal likelihood of winning. In
all cases, PLATIPUS is a better choice than the other active learning
models and in most cases should outperform every other strategy
>96% of the time. There are two exceptions: For dimethylammo-
nium iodide, PLATIPUS outperforms DT only 62% of the time.
Nonetheless, PLATIPUS remains a better choice, even though this
advantage is smaller than usual. For 4-hydroxyphenethylammonium
iodide, despite outperforming the other active learning methods,
PLATIPUS is less likely to succeed than random choice. However,
this amine has an anomalously high success rate of 47%, compared
to 16%–28% for other amines (Table I). In other words, adopt-
ing a smart strategy offers few advantages when dumb luck has a
high chance of success. For reference, the last column in Table V
shows a similar comparison of the DT model against random
experimentation. In only one case does the active DT model out-
perform the random baseline. This further highlights the strength of
PLATIPUS. In summary, PLATIPUS is comparable or better to any
other strategy for all amines considered, indicating that is a robust
strategy to adopt when attempting new experiment campaigns.

IV. CONCLUSION
Experimental chemistry datasets are typically small, which

makes efficient data use imperative. Acquiring new experimental
data can be slow and expensive, so methods that reduce the need to
acquire new data are valuable. Chemical reaction systems are com-
plicated, and while there are often broad trends between different
systems, each chemical system has its own unique peculiarities.

By performing an extensive series of computational experi-
ments using historical data, we have demonstrated that the MAML
meta-learning method uses historical data to get a more explanatory
value from a subsequent fixed, limited set of data for a new chemi-
cal system. Additionally, we have demonstrated that the PLATIPUS
active meta-learning method gives additional improvements in
model quality when it is possible to acquire additional data. The
PLATIPUS active meta-learning approach learns better models than
active learning alone on both historical data and in-laboratory
testing. The demonstrated advantage of PLATIPUS in the context
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of exploratory halide perovskite synthesis in the laboratory indicates
its robustness to noise in a real world setting.

More broadly, the training and evaluation strategies we
describe are generally applicable to other types of chemical and
material synthesis problems that can be described in terms of distinct
but related tasks. Tasks such as replacing one chemical ingredi-
ent with another are examples of Wittgenstein’s notion of family
resemblance (Famlienähnlichkeit), in the sense that there is only a
“complicated network of similarities overlapping and criss-crossing”
rather than any specific features common to all tasks.67

Meta-learning approaches, such as MAML used here, allow us
to incorporate the peculiar details of the new task while still mak-
ing use of the general structure of a historical dataset of related
tasks. Adding active-learning iterations using PLATIPUS increases
the value of limited experiments and, thus, is generally applicable to
the various autonomous experimentation systems discussed in the
Introduction.

SUPPLEMENTARY MATERIAL

See the supplementary material for tables of training dataset
features, task relatedness measured by average cosine similarity and
OTDD, photographs of example reaction outcomes, model hyper-
parameters tested in each stage, and additional figures depicting
model performance in the cross validation, hold out testing, and in
laboratory testing phases, as described in the text.
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