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ABSTRACT
In social networks, a node’s position is, in and of itself, a form

of social capital. Better-positioned members not only benefit from

(faster) access to diverse information, but innately have more poten-

tial influence on information spread. Structural biases often arise

from network formation, and can lead to significant disparities in

information access based on position. Further, processes such as

link recommendation can exacerbate this inequality by relying on

network structure to augment connectivity.

In this paper, we argue that one can understand and quantify this

social capital through the lens of information flow in the network. In

contrast to prior work, we consider the setting where all nodes may

be sources of distinct information, and a node’s (dis)advantage takes

into account its ability to access all information available on the

network, not just that from a single source. We introduce three new

measures of advantage (broadcast, influence, and control), which are

quantified in terms of position in the network using access signatures
– vectors that represent a node’s ability to share information with

each other node in the network. We then consider the problem of

improving equity by making interventions to increase the access

of the least-advantaged nodes. Since all nodes are already sources

of information in our model, we argue that edge augmentation is

most appropriate for mitigating bias in the network structure, and

frame a budgeted intervention problem for maximizing broadcast

(minimum pairwise access) over the network.

Finally, we propose heuristic strategies for selecting edge aug-

mentations and empirically evaluate their performance on a corpus

of real-world social networks. We demonstrate that a small number

of interventions can not only significantly increase the broadcast

measure of access for the least-advantaged nodes (over 5 times

more than random), but also simultaneously improve the minimum
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influence. Additional analysis shows that edge augmentations tar-

geted at improving minimum pairwise access can also dramatically

shrink the gap in advantage between nodes (over 82%) and reduce

disparities between their access signatures.
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1 INTRODUCTION
One of the promises of a highly-connected world is an impartial

spread of opinions driven by free and unbiased sources of informa-

tion, leading to an equitable exposure of opinion to the wide public.

On the contrary, the social network platforms currently governing

news diffusion, while offering many seemingly-desired features like

search, personalization, and recommendation, are reinforcing the

centralization of information spread and the creation of so-called

echo chambers and filter bubbles [5]. A person’s position within

these networks often determines their access to information and op-

portunities such as jobs, education, and health information [13, 24]

and can confer advantage via influence on others [36]. Network

position can therefore be viewed as a form of social capital [12, 15]
– a function of social structure that produces advantage [23].

The dynamics of how social networks are formed (including

organic growth and recommendations) can lead to skews in net-

work position based on demographics, gender, or other attributes.

Experiments show that introducing even slight demographic bias to

network formation processes can exacerbate differences in network

structure between groups [64]. This becomes even more problem-

atic when seen in light of boyd, Levy, and Marwick’s argument [10]

that position in the network is itself a feature that can lead to

discrimination separately from individual demographic attributes,
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and modern social networks might be vehicles for a more direct

propagation of (dis)advantage. Social networks’ topology can cause

better-positioned users to benefit more from the privileges of their

position, leading to even better connections. On the other hand,

less well-connected individuals – because of demographics, class,

wealth, or other factors that drive network position – will find it

much harder to improve their network status. As a result, the gap

in power between the most and least advantaged users can lead to

a cascading cycle where those with more capital have better oppor-

tunities for additional improvement, creating increased inequality.

In order to mitigate the differential accumulation of social cap-

ital, one could consider intervening in the network to change the

spread of information. However, in order to do this in an automated

fashion, we need ways to measure social capital based on network

position. Fish et al. [31] first introduced the notion of information
access as a resource and used it to propose a formal description

for an individual’s access to information. Beilinson et al. [7] sub-

sequently defined an access signature to encode the "view" from

a node of its access to information sent from other nodes in the

network. We build on these approaches to model structural access

advantage and formulate appropriate metrics for its evaluation. We

design intervention strategies that use these metrics to achieve our

main goal of ensuring equitable information access.

Our setup differs from prior work in a significant way. In influ-

ence maximization, a single piece of information is being spread in

the network, and one can improve access for disadvantaged nodes

by augmenting the set of initial sources. In contrast, we consider a

setting such as those which occur on LinkedIn, where each node is

the source of a unique piece of information, and access to all pieces

is equally important. Given this key difference, we argue that in-

stead of trying to select additional seeds for some or all of the pieces

to improve dispersal, the natural intervention is adding edges to the

network, representing the idea of purposefully strengthening weak

ties [36] to mitigate bias in the structure and increase connectivity.

In this work, we have three primary contributions:

(1) Using a normative framework and drawing on prior work,

we formulate three measures – broadcast, influence, and control –
to model structural advantage with respect to access.

(2) We focus on intervening in the network using budgeted

edge augmentation to improve the structural position of least-

advantaged nodes, reduce the advantage gap, and ensure that nodes

have similar “views” of the network (as measured via their access

signature). At the core of our approach is the idea that to miti-

gate inequality, we should maximize the minimum access of the

least-advantaged node – which in turn reduces to maximizing the

minimum access between all pairs of nodes in the network.

(3) We introduce heuristic algorithms for selecting edge augmen-

tations and empirically evaluate them on a corpus of social network

data. We further show experimentally that while this process di-

rectly maximizes the broadcast measure of access advantage, it also

simultaneously improves influence and control disparities among

nodes, as well as making node access signatures more uniform.

2 RELATEDWORK AND PRELIMINARIES
Motivated by the design of viral marketing strategies, Domingos

and Richardson [28] introduced an algorithmic problem for social

networks in which one wished to convince an initial subset of indi-

viduals to adopt a new product or innovation in order to maximize

the cascade of further adoptions. This model can be generalized

to many types of information spread beyond adoption and was

formalized as the discrete optimization problem of influence max-
imization by Kempe et al. [44], leading to an extensive literature

on the subject (see the survey [51]), including many applications

in public health awareness [71, 76–78].

Structural Advantage. Information propagation in networks has

been studied for decades in social and computing sciences [13, 24],

and network position is known to dramatically impact a node’s

access to other network members [36]. It has been repeatedly ar-

gued that one’s position in a network is itself a form of wealth

or social capital [12, 15, 23, 37], enabling better and faster access

to circulating information and important individuals. This trans-

lates into better access to opportunities (such as jobs) and enables

well-positioned people to be more effective brokers, make better

decisions, and innovate more efficiently [12]. Further, in public

health scenarios, people rarely act on mass-media information un-

less it is also transmitted through personal ties [43, 60], leading to

well-connected nodes having improved outcomes in crises.

Bias in Network Structure. The network itself can act as a trans-

mitter for bias when the structural advantages described above

interact with network formation mechanisms that encourage ho-

mophily and clustering of demographic groups. Schelling demon-

strated how local neighborhood-based decisions could lead to seg-

regation [62], and recent work has explored how bias in localized

decisions about new connections can result in networks that have

significant skew [42, 48]. Sociologists have extensively studied the

role of social status in shaping network structure, showing in small-

scale experiments that it significantly influences whether individu-

als end up in central vs. peripheral network positions [18, 52].More

recently, studies in network science have extended these ideas

to large-scale networks by developing computational methods for

characterizing the structural influence of social status at scale [4, 49].

For example, Clauset et al. quantify the ways in which institutional

reputation (and the auxiliary features of demographics and pro-

ductivity) shapes the structure of faculty hiring networks among

academic departments [21, 75] and subsequently the differential

spread of ideas [56].

Algorithmic Fairness in Information Propagation. In the setting

of information access, natural questions of fairness arise in the

problem of ensuring similar allocation among demographic groups,

which are often represented as disjoint subsets of nodes. Inspired by

the literature on social position initiated by Granovetter’s strength

of weak ties [36] and framed in the context of online social networks

by boyd, Levy, and Marwick [10], there has been a rash of recent

work on computational questions around fairness in access on

social networks [1, 6, 29–31, 38, 39, 45, 53, 57, 63, 69, 74]. The key

underlying idea is that information access is a resource, and Fish et

al. [31] argued that access based on network position is a form of

privilege, which they used to define a notion of individual fairness.

Much of the work on defining and applying fairness has been

undertaken in the influence maximization framework. One impor-

tant thrust has been improving equity among demographic groups
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within a network, typically defined based on protected classes (e.g.,

race, gender) [1, 39, 57, 63, 69]. They developmetrics and algorithms

to ensure that roughly equal amounts of information reach each

demographic group while optimizing influence maximization. In all

cases, a single piece of information is being spread in the network.

Intervention takes the form of augmenting the seed set in most

work, though [39, 66] consider adding edges instead of seeds. In

other recent work on edge augmentation to maximize the influence

of a given group [6, 26], advantage is inherently defined to be access

to (a small) seed set.

Several other recent papers in the space consider variants of the

basic access problem. Becker et al. [5] consider ` sources of diverse

information in a network and maximize the expected number of

nodes receiving at least 𝑣 types of information. In our setting ` = 𝑛

(we consider each user as a potential source of information), and

our objective function is different. Specifically, Becker et al. [5] are

not focused on fairness, but rather maximizing the number of users

with diverse information. In contrast, wewant to improve the access

of the most disadvantaged node. Ramachandran et al.[58] consider

another related but distinct problem, using a diffusion model of

mobility dynamics and try to achieve equity in group-level access

in the facility location problem.

Graph Neural Networks (GNN). There has been recent work on

analyzing the information access problem in theoretical GNNs [2,

3, 35, 68], and in solving it using link recommendation [3, 8, 41, 68].

Several of these papers suggest using random-walk spectral metrics

to characterize information flow [3, 35, 72].

2.1 Preliminaries
As in the discrete optimization setting of [44], we use a stochastic

information flow model describing how information might trans-

mit from one node to another along the edges of 𝐺 (for example,

Independent Cascade, Linear Threshold, or an infection flow model

from epidemiology [44]). These models all work by assuming that

at time zero, an initial seed set of nodes that possess the informa-

tion to be spread. For each node 𝑣 𝑗 as the seed set, there is then a

(potentially hard to compute) probability 𝑝𝑖 𝑗 – which we call access
proximity – that node 𝑣𝑖 ∈ 𝑉 possesses 𝑣 𝑗 ’s information once the

spread process has terminated. Similarly, their access distance can be
defined as 1−𝑝𝑖 𝑗 . Inversely, 𝑝 𝑗𝑖 is called the reach of 𝑣𝑖 with respect

to 𝑣 𝑗 . We restrict our attention to the undirected setting (where

social network links require mutual consent and typically create a

giant connected component – Facebook’s has 99.9% of users [70]),

𝑝𝑖 𝑗 = 𝑝 𝑗𝑖 and we use access proximity and reach interchangeably.

Independent Cascade Model. In this work, we utilize the standard

probabilistic model of influence propagation, Independent Cascade

(IC) [44] with a uniform transmission probability 𝛼 . In this model, a

node exists in one of three states: ready to receive, ready to transmit,
or dormant. Initially (at time zero), all nodes are ready to receive

information, while the seed nodes also possess the information and

are ready to transmit. At each time step, a node that is ready to

transmit sends its information along each incident edge indepen-

dently with probability 𝛼 . All such transmissions are imagined to

happen simultaneously, after which the transmitting node goes

dormant. Computing the access proximities for Independent Cas-

cade is #𝑃-hard [20], so we use standard Monte Carlo simulations

to estimate them when needed.

Access signatures. Since we view a piece of information as being

uniquely identified by its originator, describing the access of a node

requires a vector of 𝑛 − 1 probabilities, which is standardized to

length 𝑛 to facilitate easy indexing and comparison across nodes,

and 𝑝𝑖𝑖 := 1. These vectors are called information access signatures,
and were introduced by Beilinson et al. [7], who argued that nodes

that have similar “status” based on network position receive similar

information. The signature encodes the “view” from a node of

its access to information sent from the other nodes in 𝐺 ; people

who are likely to receive information from the same part(s) of the

network will have similar signatures.

Definition 1 (Access Signature [7]). The access signature 𝑎𝐺𝛼 : 𝑉 →
R𝑛 of a node 𝑣𝑖 ∈ 𝑉 in graph 𝐺 on 𝑛 nodes is:

𝑠𝐺𝛼 (𝑖) = (𝑝𝑖1, ..., 𝑝𝑖 𝑗 , ...𝑝𝑖𝑛)

3 STRUCTURAL ADVANTAGE
How does network position impact access and influence? In so-

cial networks, structural advantage can manifest in many ways.

Inspired by prior work, we formalize three distinct notions of ad-

vantage arising from network position and propose measures for

quantifying each.

3.1 Access-based Definitions
We begin by defining analogues of graph-theoretic proximity, di-

ameter, and betweenness centrality, highlighting when the access-

based variants diverge from their traditional counterparts.

Access Proximity. In graph theory, the proximity of nodes 𝑣𝑖 and

𝑣 𝑗 is the number of edges in a shortest 𝑣𝑖𝑣 𝑗 -path. To adapt this to

an information flow setting, we let the access proximity be

dist
∗ (𝑣𝑖 , 𝑣 𝑗 ) = 𝑝𝑖 𝑗 ,

the probability that 𝑣𝑖 receives 𝑣 𝑗 ’s information after the comple-

tion of Independent Cascade. We observe that these measures can

diverge in even simple networks. Consider two nodes connected

by an edge; they have distance 1 and access proximity 𝛼 . If instead,

these nodes were connected by 𝑡 disjoint paths of length 2 they

would have distance 2, but access proximity 1 − (1 − 𝛼2)𝑡 . Assume

𝑡 >
log(1−𝛼 )
log(1−𝛼2 ) . While the nodes are graph-theoretically closer in

the first scenario, in the information access setting they are closer

in the second.

Access Diameter. For large networks, we often rely on summary

statistics as indicators of network structure. One such metric is

the diameter, defined to be the maximum distance between any

two nodes (equivalently, the length of a longest shortest path). The

analogous notion in the information access setting is then then

the smallest access proximity between two nodes (equivalently, the

lowest probability of pairwise information transmission). We call

this the access diameter :

diam
∗
𝐺 = min

𝑣𝑖 ,𝑣𝑗 ∈𝑉
𝑝𝑖 𝑗 .
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Access Centrality. Finally, since we are interested in assessing

influence or control with respect to information flow, we consider

the betweenness centrality, which measures how often a node ap-

pears on the shortest paths between others. Specifically, if we let

𝜎 𝑗𝑘 be the number of shortest 𝑣 𝑗𝑣𝑘 -paths, and 𝜎 𝑗𝑘 (𝑖) the number

of shortest 𝑣 𝑗𝑣𝑘 -paths passing through vertex 𝑣𝑖 , we can define the

betweenness centrality of 𝑣𝑖 as

𝑔(𝑣𝑖 ) =
∑︁

𝑣𝑗≠𝑣𝑘≠𝑣𝑖 ∈𝑉

𝜎 𝑗𝑘 (𝑖)
𝜎 𝑗𝑘

.

One can think of this as measuring the brokerage ability of a

node in a world where information flows along the shortest paths.

To adapt to the Independent Cascade model, we want to measure

the fraction of other nodes’ pairwise access that depends on 𝑣𝑖 . In

other words, the access centrality 𝑣𝑖 is

cent
∗ (𝑣𝑖 ) =

∑︁
𝑣𝑖≠𝑣𝑗≠𝑣𝑘 ∈𝑉

𝑝 𝑗𝑘 (𝑖)
𝑝 𝑗𝑘

,

where 𝑝 𝑗𝑘 (𝑖) = 𝑝 𝑗𝑘 − 𝑝′
𝑗𝑘

can be computed using the access prox-

imity 𝑝′ in 𝐺 ′ = 𝐺 \ 𝑣𝑖 . We note this is computationally expensive,

as you must re-estimate access proximity in𝐺 \ 𝑣 for each vertex 𝑣 .

To see where these two notions diverge, consider nodes 𝑎, 𝑏 con-

nected with a path of length two through node 𝑐 . The betweenness

and access centrality of 𝑐 are both 1. Now augment this graph by

adding 𝑡 disjoint 𝑎𝑏-paths of length 3; the betweenness centrality of

𝑐 remains 1, but the access centrality tends to 0 as 𝑡 increases, as the

fraction of information passing through 𝑐 becomes insignificant.

3.2 Measures of Advantage
We now formalize three different notions of structural advantage,

arising from various perspectives on fairness and information flow.

3.2.1 Broadcast Advantage: From a fairness point of view, Fish et

al.[31] argued that the performance of a source should be measured

by how effectively it reaches least-advantaged nodes. In this vein,

we propose our first advantage function, broadcast, to measure how

difficult it is for a node to disseminate its information to all others
in the network.

Definition 2 (Broadcast Advantage). The broadcast advantage of
a node is the worst-case probability that its information is received

– equivalently, the minimum entry in its access signature:

broadcast(𝑣𝑖 ) = min

𝑝𝑖 𝑗 ∈𝑠 (𝑖 )
𝑝𝑖 𝑗 .

In some sense, this represents how “loud” the node is – a larger

broadcast means a better probability that everyone else in the net-

work will receive your information. Consider the case of recruiters

using a network like LinkedIn, wanting to spread information about

a job opportunity. In order to ensure a diverse candidate pool and

broad reach, the employer wants a high probability the ad will

reach all suitable nodes in the network. Since well-connected users

receive many such ads, the measure of recruiting effectiveness

will depend on how well they can disseminate the information to

the least-advantaged members of the network. Better-positioned

recruiters will have higher broadcast.

Further, social media is often used in public health epidemiologic
monitoring and surveillance for early detection of disease outbreaks.

Staff responsible for dispelling misinformation and identifying high-

risk or affected groups need access not only to the majority of

people, but especially to those who are poorly-connected (and thus

at risk of being neglected in treatment [33, 61]), motivating us to

improve their broadcast.

From another perspective, the broadcast is a lower bound on

the probability that 𝑣𝑖 will get information from 𝑣 𝑗 , regardless of
which 𝑣 𝑗 is selected! Increasing broadcast(𝑣𝑖 ) necessarily improves

information flow to/from the parts of the network that are currently

least accessible from 𝑣𝑖 , increasing the novelty and diversity of

its information. Novel information often represents a resource or

opportunity due to local scarcity, and users with access to it enjoy

social and economic advantages, including more success in wages,

promotion, job placement, and creativity [12, 36].

3.2.2 Influence Advantage: Network prominence has been studied

as a type of advantage [11, 46]. A central or well-connected node

is more likely to have high visibility, which Jackson’s friendship
paradox argues can lead to over-representation and increased in-

fluence [37]. This type of advantage does not require the ability to

reach all nodes in the network, just many of them.

Being able to disseminate information to a large set of other

members enables a user to build their social reputation, express

and diffuse their opinion, and discover novel content and informa-

tion [26], which can be viewed as media power or celebrity capital.

This may also lead to opportunities for revenue from advertise-

ment [17]. Consider the example of collaborations in a scientific

community. If someone can reach more people to share her re-

search, she gets more recognition, and feedback which enables

improvement, collaboration opportunities, and directions or ideas

for future work [25, 65]. We propose influence advantage as a mea-

sure of this form of structural advantage, drawing on influence

maximization [44] in choosing a quantification.

Definition 3 (Influence Advantage). The influence advantage of
a node is the average probability that its information is received –

equivalently, the mean of the entries in its access signature:

influence(𝑣𝑖 ) =
1

𝑛

∑︁
𝑝𝑖 𝑗 ∈𝑠 (𝑖 )

𝑝𝑖 𝑗 =
1

𝑛

∑︁
𝑣𝑗 ∈𝑉

dist
∗ (𝑣𝑖 , 𝑣 𝑗 )

3.2.3 Control Advantage: Burt [12] introduced the idea of broker-

age advantage. Individuals in networks withmany “structural holes”

may derive information and control benefits from the lack of exter-

nal connectivity among people they can reach. Burt introduced this

form of social capital as an information benefit or vision advantage

that improves performance by providing early access to diverse and

novel perspectives, ideas, and information. Hence, a person’s reach

is a form of power as it enables her to broker favors and consolidate

strength by being uniquely positioned to coordinate the actions of

others. We call this type of structural advantage control.
While Burt proposed several ways tomeasure structural holes, in-

cluding bridge count [16], and network constraint/redundancy [12],

in more recent work Jackson [37] used betweenness centrality [32]

to measure brokerage advantage. This generic measure of impor-

tance in a network captures a node’s ability to act as an intermediary

to coordinate others, where nodes rely on it in order to reach other

users along shortest paths. Higher centrality corresponds to more
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control over information flow in the network. In turn, we use access

centrality to measure the control advantage.

Definition 4 (Control Advantage). The control advantage of a node
is given by its access centrality:

control(𝑣𝑖 ) = cent
∗ (𝑣𝑖 ) =

∑︁
𝑣𝑖≠𝑣𝑗≠𝑣𝑘 ∈𝑉

𝑝 𝑗𝑘 (𝑖)
𝑝 𝑗𝑘

We observe that control can be rewritten as a nested sum over

nodes, revealing a useful finer-grained notion of advantage. For

example, suppose the node 𝑣𝑖 has one neighbor 𝑣 𝑗 , which is a leaf,

and another neighbor which is a member of a large clique. Clearly,

𝑣𝑖 has a large degree of control over 𝑣 𝑗 , as it is an intermediary to

all access to the clique, yet control(𝑣𝑖 ) might remain small, as 𝑣𝑖
plays little role in access between clique nodes. We use control

𝑖
𝑗

to denote the brokerage 𝑣𝑖 has over information reaching node 𝑣 𝑗 ,

where

control
𝑗
𝑖
=

∑︁
𝑣𝑗 ∈𝑉

𝑝𝑖 𝑗 (𝑐)
𝑝𝑖 𝑗

.

Our measure can then be written as control(𝑣𝑖 ) =
∑

𝑗 control
𝑖
𝑗 .

When trying to mitigate inequity in access, we would like to see

the control values decrease for better-positioned nodes. Addition-

ally, we argue that in an ideal network, no node has a monopoly

over others’ access to information, and we would like to prevent

situations where control
𝑖
𝑗
is close to 1 for any pair (𝑖, 𝑗).

4 EDGE INTERVENTION &WELFARE
In contrast to the standard framework of influence maximization,

we argue that when considering information flow in a network, it

is important to have access to information from all individuals, not

just a seed set. Further, given this shift in objective, adjustments

to the model of intervention are warranted, and we propose edge

augmentation as the natural candidate. We support our argument

from three perspectives: variety, structure, and voice.

Variety. Since ideas travel a variety of paths frommany sources [34,

54, 73], access to more diverse information and a greater number

of individuals is important [36] and can provide a vision advantage

that translates into social capital [12]. Key functionalities of social

networks like LinkedIn rely on the fact that important information

is frequently being disseminated from a multitude of constantly-

changing sources. Traditional influence maximization is insufficient

for assessing access and proposing equity-improving interventions

in this setting, as we no longer know the seed set, nor can we afford

to try and augment sources for each new announcement.

Structure. Granovetter introduced the idea of network manip-

ulation to achieve specific goals [36]. Since network position is a

critical form of social capital in information access, and positional

disparities arise from biases in the network structure, we argue

that interventions which change the underlying connectivity of

the network are necessary. The natural candidate is to increase

access through edge augmentation. This approach is further sup-

ported when one thinks of these edges as representing the addition

of weak ties to the transmission network, as research shows that

information can traverse greater social distance and reach more

people when diffused along weak ties instead of strong ones [36].

Voice. While it is easy to focus on improving access for poorly-

positioned nodes, it is also important to consider the effect of in-

terventions on already-advantaged users. Specifically, node inter-

ventions increase the reach (and thus influence) of selected indi-

viduals [37], essentially amplifying their information within the

network. To give voice to all participants, we argue that edge aug-

mentation improves fairness by increasing the reach of all nodes.

Now that we have argued for using edge augmentation to inter-

vene in the network, we turn to the question of which structural

measure of advantage to optimize. We use a normative framework

to select one of broadcast, influence, and control, and draw on the

RawlsianMaximin argument [59] in proposing that we should maxi-

mize the advantage of the least advantaged node(s). Rawlsian princi-

ple has been used in other algorithmic fairness methods [19, 31, 40].

To choose a notion of advantage, we begin by observing that

optimizing influence encourages the formation of edges to well-

positioned nodes. Therefore, nodes with better connections become

more attractive to connect to [37], leading to a rich-get-richer phe-

nomenon and potentially increasing the advantage gap instead of

equalizing access [14]. These peripheral-central connections also

increase the control of central nodes over others, especially the

disadvantaged. On the other hand, using broadcast as the objective

prioritizes connectivity for the most disadvantaged nodes. As John

Stuarts Mills noted, "it is hardly possible to overrate the value . .

. of placing human beings in contact with persons dissimilar to

themselves and with modes of thought and action unlike those

with which are familiar . . . Such communication has always been

and is peculiarly in the present age, one of the primary sources

of progress" [55]. Optimizing for control, on the other hand, pri-

oritizes the brokerage ability of nodes over their access to diverse

information, which could lead to polarization and centralized in-

formation distribution. We argue that increasing broadcast, which

tends to also reduce the control of other nodes, is preferable since

depending on powerful information-brokers reduces one’s chance

of unbiased access to diverse opinions.

Several other normative reasons underlie our preference for

broadcast to measure structural advantage, when one considers

outcomes in a network containing several (mostly-disjoint) minor-

ity groups. First, while these groups may have common interests,

they will not individually have enough influence to accomplish

them. Connecting disadvantaged nodes directly (instead of through

a central node) will enable them to support one another and access

important information, while countering the ever-increasing power

of the majority. In support of this argument, we note that Kogan

et al. show that geographically vulnerable (disadvantaged) users

propagate more information during disasters, and are more likely to

propagate tweets from other geographically vulnerable users [47].

A final argument arises from work on mitigating polarization in

social networks by increasing the similarity of users’ exposure to

a broad diversity of news and ideas. Since minimizing diameter

can speed up communication [27] and increase the uniformity of

exposure times, we argue that optimizing broadcast is the natural

analogue in the information access setting.

To formalize a discrete optimization problem, wemust now trans-

form our advantage measure into an objective function. Following
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the Rawlsian Maximin Principle that one should maximize the wel-

fare of the worst-off person [59], we seek to maximize broadcast

for the least-advantaged nodes, and formalize this as the welfare.

Definition 5. The welfare of a graph 𝐺 = (𝑉 , 𝐸) is
` (𝐺) = min

𝑣𝑖 ∈𝑉
broadcast(𝑣𝑖 ) = min

𝑣𝑖 ,𝑣𝑗 ∈𝑉
dist

∗ (𝑣𝑖 , 𝑣 𝑗 )

Our central problem is to find a budgeted intervention optimizing

welfare.

Input: A graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ∈ N.
Problem: Find a set 𝐸+ ⊆ 𝑉 ×𝑉 of size at most 𝑘 so that ` (𝐻 )

is maximized, where 𝐻 := (𝑉 , 𝐸 ∪ 𝐸+).

MaxWelfare-Augmentation

5 HEURISTICS
In this section, we introduce several heuristics forMaxWelfare-

Augmentation which greedily select new edges using advantage-

based criteria. We employ two basic strategies – connecting dis-

advantaged nodes to a central one, and adding a chord between

two peripheral nodes. We will compare these with a baseline (rand)
which chooses both ends of each new edge uniformly at random.

It is also natural to try a greedy approach baseline, by adding the

edge that maximizes the objective function in each iteration. The

idea has been used in different settings [26, 31]. This greedy ap-

proach in each round, for each non-existing edge computes the

broadcast and picks the edge that maximize the broadcast. Since

the greedy baseline is computationally very expensive, we consider

a naïve variation of the greedy baseline (greedy-bc) which, instead
of proceeding in rounds, in the first round picks the top 𝑘 edges

that maximize the broadcast.

We begin by defining the center of the network to be the node

with maximum broadcast. In our algorithms, we select this node in

the un-augmented network and fix it for the duration of the edge

selection process. Aswe iterativelymake interventions, it is possible

that a new central node emerges (one with higher broadcast than

the selected center). While we could update at every step, this incurs

a high computational cost. In order to evaluate the likelihood and

impact of a shifting center, we re-ran the experiments on the three

smallest networks and recorded how often the maximum broadcast

increased, along with the 𝐿1 norm of the access signature difference

between initial and new centers. The initial center node remained

central more than 99% of the time, and the signature difference

was less than 0.01 in the other 1% of cases. Based on this and the

significant computational cost, we choose to fix a center node based

on the initial network.

Before proceeding to the heuristics, we need two additional

observations. First, computing the access proximities is known to

be #𝑃−hard [20]; as such, whenever our strategies use 𝑝𝑖 𝑗 , we rely

on simulation to estimate the access proximities using Reverse

Influence Sampling (RIS) [9, 67]. Second, greedy heuristics may

select a pair of vertices to connect which already have an edge in the

graph.When this happens, we select an alternative augmentation in

one of two ways: (1) if the heuristic was trying to connect a node 𝑢

to the center, we instead connect 𝑢 to the node with second-highest

broadcast, continuing down the broadcast order as needed until

we find a non-neighbor of 𝑢; (2) if the heuristic was adding a chord
or random edge, we “randomly replace an endpoint.” We can now

define our strategies for reducing the access diameter of a network.

Broadcast-based Strategies. To reduce the access diameter of the

network we must affect at least one node with minimum broadcast.

If 𝑣𝑖 , 𝑣 𝑗 is a pair of nodes so that 𝑝𝑖 𝑗 is minimum, we call them

diameter-defining. Our first heuristic bc-chord finds a diameter-

defining pair and adds the edge between them. A natural alternative

strategy is to connect one or both of the pair to the center ; we do
this in bc-both and bc-one, respectively. Note that bc-both adds

pairs of edges, and runs for only
𝑘
2
steps; we constrain 𝑘 to even

values in experiments to ensure fair comparisons.

Influence-based Strategies. Another reasonable approach to im-

proving access in the network is to equalize influence. Similar to

broadcast, we connect the node with minimum influence to the

center, and call this heuristic infl.

Diameter-based Strategies. Finally, we consider a measure that

can be computed without simulation, the diameter of the under-
lying network. While the shortest-path distances and access prox-

imities may diverge, they are not independent, and creating short

paths between nodes will improve their pairwise access. Similar to

bc-chord, diam-chord adds an edge between a pair of nodes with

maximum 𝑑 (𝑢, 𝑣);

6 EXPERIMENTS
We implemented the heuristics from Section 5 in C++ and compiled

with gcc 8.1.0; all experiments were run on identical hardware

equipped with 40 CPUs (Intel Xeon Gold 6230 @ 2.10GHz) and

190 GB of memory, running CentOS Linux release 7.9.2009. To

evaluate the effectiveness of our intervention strategies, we used

a corpus of real-world networks sourced from the SNAP [50] and

ICON [22] repositories, as described in Table 1. We treated all data

as undirected, and used the largest connected component for each.

As briefly mentioned in Section 5, we use Reverse Influence

Sampling (RIS) [9] to estimate access proximities; we generate

𝑅 = 10, 000 instances per simulation. To evaluate the accuracy, we

ran each estimation 10 times andmeasured the fluctuations in access

proximities. In all cases, pairwise accesses varied by less than 0.03

(3% of the range), and the average difference was at most 0.004 (0.4%

of the range). The heuristics bc-chord, bc-both, bc-one, and infl
use RIS, requiring O(𝑅𝑚 + 𝑅𝑛𝑘) time and O(𝑛2 + 𝑅𝑛) space. The
greedy-bc heuristic, adds O(𝑚) to the complexity for estimating

the access proximities for each missing edge, and drops O(𝑘) since
it is done in one round; which makes it run in O(𝑅𝑛3) time and

O(𝑛2 + 𝑅𝑛) space. Since even this variation of greedy-bc is still

computationally expensive, we only run it on the three smaller

datasets.

In each experiment, we used even values of 𝑘 from 0 to 200,

aiming for a practical intervention size relative to the network

(less than a tenth of a percent of |𝐸 |). In the Independent Cascade

model, the spread of information depends on the input parameter

𝛼 (the probability of transmission along an edge in a time step).

For each network in our corpus, we computed the distribution of

access proximities for varied 𝛼 and selected four (network-specific)

values: one each to represent poorly-spreading and well-spreading
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Figure 1: Results for Email-Arenas with 𝛼 = {0.2, 0.3, 0.4, 0.5} (top to bottom). We plot improvement in minimum broadcast and
influence (left); the violin plots show the distribution of pairwise access proximities (middle) and 𝐿1 signature distances (right).

scenarios, and two in the critical region of moderate spread (for

lower values of 𝛼 , it is not possible to significantly increase the

broadcast within the limited budget of interventions).

6.1 Summary of Experimental Results
The primary objective of this work is to intervene in a network

to improve access for the most disadvantaged nodes and reduce

disparities in advantage by making access signatures more similar.

To assess whether our strategies achieve these goals, we employ

several methods for evaluating the outcome of interventions. First,
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we directly measure the improvement in the minimum values of

broadcast and influence realized in the network. Next, we shift our

attention to the access signatures, where we evaluate whether our

interventions have increased the similarity among nodes’ views

of the network using Manhattan distance. Finally, we consider

whether our approaches improve disparity by reducing the advan-

tage gap between the most- and least-privileged nodes.

Table 1: Summary of Datasets

Name Nodes Edges Max Deg. Diam.

Email-EU 803 24729 338 5

Email-Arenas 1133 5451 71 8

Irvine 1294 19026 231 7

Facebook 4039 88234 1045 8

ca-GrQc 4158 13428 81 17

ca-HepTh 8638 24827 65 18

In Figure 1, we present a comprehensive view of all three evalua-

tions for a single network across its four transmission probabilities.

From the first column, we observe that the heuristics bc-chord,
bc-both and infl are most effective at improving broadcast and

influence, with the latter two performing almost identically. Further,

bc-chord surpasses the other approaches as information spreads

more easily. These results are qualitatively replicated by the other

networks in our corpus (see Appendix A). Given this, we restrict

our attention to the bc-chord and infl approaches in subsequent

figures, with infl favored over bc-both to increase the diversity

among our strategies. Further, we note that the behavior with re-

spect to 𝛼 remained consistent across all networks, and is well-

represented by considering only the low-moderate-spread and well-

spreading values of 𝛼 (2nd and 4th columns). Due to space con-

straints, plots for the entire corpus (Figures 2, 3 – 7), only show these

two transmission probabilities. In the second column of Figure 1,

we use violin plots to show the distribution of access proximities

for all pairs before (init) and after (greedy-bc, infl, bc-chord)
intervention. We observe that while greedy-bc augmentation has

little effect, both heuristics significantly reduce the maximum pair-

wise access proximity, with bc-chord again out-performing infl
as 𝛼 increases. While the distributions for other networks vary

in initial shape, the pattern of improvement was consistent (see

Section 6.3). Finally, the third column of Figure 1 illustrates our

success in increasing the uniformity among each node’s view of the

network as measured by reducing the maximum distance between

access signatures. Results for other networks are summarized in

Section 6.3.

To round out our evaluation, we also computed how our inter-

ventions affected the advantage gaps for broadcast, influence, and

control, as discussed in Section 6.4. For the network featured in

Figure 1, these results are in the second row of Tables 2 and 3.

One surprising result was that while the absolute broadcast gap

increased, the relative one decreased. We believe this is caused by

interventions increasing access by a larger additive amount for cen-

tral nodes than peripheral ones. Over the entire corpus, bc-chord
shrank the broadcast / influence gaps by over 85% / 82%, respec-

tively.

Overall, we observe that our interventions are most effective

when the network is better-connected – whether because 𝛼 is

higher, or the underlying graph is denser (e.g. in EU and Fb). Ad-

ditionally, our analysis showed that bc-both and infl perform

almost identically (Figures 2 and 3), suggesting that the nodes with

minimum broadcast and influence may have similar access signa-

tures. To further investigate this phenomenon, we measured the

signature difference between the nodes selected by each of these

heuristics at each intervention step and found them to be consis-

tently in the bottom 10% of all pairs, with the average falling in

the bottom 1%. This leads us to hypothesize that the set of least-

advantaged nodes with respect to broadcast and influence are al-

most identical.

6.2 Improving Minimum Broadcast / Influence
The broadcast and influence measures quantify a node’s structural

advantage as a function of its signature. Here we evaluate whether

edge interventions can improve these measures for the most disad-

vantaged nodes in the network. Figures 2 and 3 plot the trajectory

of the minimum broadcast and influence as the number of interven-

tions 𝑘 increases with low-moderate- and well-spreading 𝛼 for each

network in the corpus. We observe that infl and bc-both consis-

tently show the most improvement for both advantage measures.

Further, rand and greedy-bc both have similarly poor performance.

Most social networks contain multiple distance minority groups

(consider the friendship network in a high school). Since greedy-bc
does not update the access proximities, it may get stuck using all

its intervention on one disadvantaged group, while ignoring the

rest.

6.3 Making Nodes & Signatures Closer
One goal of intervention is to increase access for nodes that have the

lowest probability of receiving some types of information. In Fig-

ures 4 and 5 (and the second column of Figure 1 for Email-Arenas),

we plot the distribution of pairwise access proximities before and

after intervention; we again consider two transmission probabil-

ities (low-moderate-spread and well-spreading) for each of the 6

networks in the corpus. We observe that while the median value

does not move significantly, the lower tail of the distribution gets

much shorter and thinner. The amount of improvement increases

with 𝛼 , and is more pronounced in the denser networks (EU, Irvine,

and Fb). In some cases, with only 200 interventions, we are able

to increase the minimum pairwise access proximity by 0.7, more

doubling the probability of information transmission!

Another of our objectives is increasing similarity among access

signatures so that all nodes have a similar “view” of the network.

We use the Manhattan distance (𝐿1 metric) to measure the distance

between two signatures
1
. Figures 6 and 7 (and the third column of

Figure 1 for Email-Arenas), show violin plots of the distribution

of these distances. The maximum signature difference was consis-

tently reduced (at least 43% for well-spreading 𝛼), and while the

median was relatively stable, the tail of the distributions shifted

noticeably downward.

6.4 Measuring the Gap
The final central premise of this work is that improving equity

requires reducing access disparities between nodes. To evaluate

1
using Euclidean distance (𝐿2) results in similar trends and no qualitative differences
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Table 2: Absolute/Relative Advantage Gaps

(Network, 𝛼 ) Gap

Heuristic

init rand infl bc-chord

(Email-EU, 0.3)
bc

infl

0.21/2.49 0.21/2.48 0.14/0.21 0.08/0.10
0.67/2.40 0.68/2.40 0.17/0.20 0.09/0.10

(Email-Arenas, 0.4)
bc

infl

0.13/5.30 0.13/5.95 0.24/0.68 0.24/0.61
0.71/5.62 0.72/5.64 0.35/0.66 0.33/0.60

(Irvine, 0.4)
bc

infl

0.06 /4.83 0.08 /5.21 0.23 /0.56 0.17 /0.29
0.85 /13.8 0.86 /14.4 0.33 /0.54 0.21 /0.29

(Facebook, 0.3)
bc

infl

0.14 /5.97 0.20 /2.63 0.26 /0.97 0.25 /0.79
0.79 /4.55 0.68 /2.61 0.47 /1.01 0.42 /0.80

(ca-GrQc, 0.6)
bc

infl

0.07 /11.6 0.07/7.63 0.25/0.93 0.25/0.76
0.76/12.4 0.78/12.4 0.41/0.90 0.36/0.74

(ca-HepTh, 0.6)
bc

infl

0.09/9.56 0.10/8.33 0.25/1.32 0.25/1.03
0.75/9.11 0.75/8.14 0.48/1.27 0.43/1.01

this, we measure the advantage gap for broadcast and influence, as

well as the maximum amount of control achieved in the network

(which can be viewed as a gap, since there are always nodes on the

periphery with control value essentially zero).

Broadcast/Influence Gaps. We begin by calculating both the abso-

lute (max−min) and relative (
max −min

min
) advantage gaps for broad-

cast and influence on networks in the corpus; Table 2 shows these

when 𝛼 is well-spreading. As mentioned in Section 6.1, the absolute

broadcast gap often increases with intervention, while the influ-

ence gap is typically reduced. However, the relative advantage gap

behaves quite differently, consistently decreasing significantly with

bc-chord, yet increasing in most cases for infl. This supports our
argument that infl may contribute to a rich-get-richer phenome-

non by increasing advantage for central nodes, and is an important

distinction between the two heuristics.

Reducing Control. Finally, we consider how our interventions

affect control. In Table 3, we report the maximum values of not only

the primary control measure of cent
∗
but also the finer-grained pair-

wise control (control
𝑐
𝑖
). Here, we must restrict our analysis to the

three smallest networks in our corpus due to the exceptionally high

cost of computing control for all nodes (which requires removing

each node from the network and re-estimating access proximities);

we use the same well-spreading 𝛼 values as in our gap analysis.

The results are encouraging, as they show that intervention can

increase the independence of nodes in the network when accessing

information and prevent better-positioned nodes from having a

monopoly over others. It is noteworthy that bc-chord not only

uniformly achieves more than 53% reduction in pairwise control,

it never increases the control (whereas infl can cause a 10-fold

jump).

Table 3: Maximum Control Values

(Network, 𝛼 ) Measure

Heuristic

init rand infl bc-chord

(Email-EU, 0.3)
cent

∗

control
𝑐
𝑖

0.009 0.007 0.014 0.002
1.000 1.000 0.107 0.056

(Email-Arenas, 0.4)
cent

∗

control
𝑐
𝑖

0.008 0.006 0.112 0.008

1.000 1.000 0.476 0.464

(Irvine, 0.4)
cent

∗

control
𝑐
𝑖

0.008 0.007 0.050 0.006
1.000 1.000 0.573 0.217

7 CONCLUSION
In this work, we propose a novel method for quantifying social capi-

tal through the lens of information flow in a network when all nodes

have unique, equally-important information to disseminate. We

introduce three new measures of structural advantage quantified in

terms of network position, argue for intervening through edge aug-

mentation to reduce bias in network structure, and formalize the

budgeted intervention problem of MaxWelfare-Augmentation

for mitigating structural inequity in information access. Finally,

we propose heuristic strategies that improve access for the least-

advantaged nodes, reduce advantage disparities, and increase the

similarity in access signatures. We perform a case study on a corpus

of social networks and demonstrate that our bc-chord heuristic im-

proves the minimum broadcast and influence, dramatically shrinks

advantage gaps, and reduces variance among access signatures.

Although, chord-heuristics connections may not be practical de-

pending on the setting and kinds of entities in the network. It is

worth mentioning these links may cause unintended social conse-

quences.

Our work is inherently limited by our use of a uniform transmis-

sion probability in the Independent Cascade model, and by ignoring

the time at which information is received (as we know that early

access plays an important role in social capital). Although, our

measures and strategies are independent of the IC model, and can

be applied to any probabilistic models of information flow, and

may improve many existing diameter-based approaches. Further,

the quantification of control is computationally infeasible for large

networks, limiting our empirical evaluation.

We leave open many directions for future work, including the

adaptation of these ideas to directed networks where access and

reach may differ (𝑝𝑖 𝑗 ≠ 𝑝 𝑗𝑖 ), and optimizing for one may lead to

trade-offs for the other (note that most heuristics can be modified

to work in the directed setting). It would also be interesting to

adapt this problem to the group fairness setting by defining and

optimizing advantage measures on groups. Finally, we note that

our assumption is not true for misinformation, and information

overflow.
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A APPENDIX

(a) Email-EU (Left: 𝛼 = 0.1, Right: 𝛼 = 0.3)

(b) Email-Arenas (Left: 𝛼 = 0.2, Right: 𝛼 = 0.4)

(c) Irvine (Left: 𝛼 = 0.2, Right: 𝛼 = 0.4)

Figure 2: For smaller networks,we plot the improvement inmin. broadcast and influence for low-moderate- andwell-spreading𝛼 .

1646



FAccT ’23, June 12–15, 2023, Chicago, IL, USA

(a) Facebook (Left: 𝛼 = 0.1, Right: 𝛼 = 0.3)

(b) ca-GrQc (Left: 𝛼 = 0.4, Right: 𝛼 = 0.6)

(c) ca-HepTh (Left: 𝛼 = 0.4, Right: 𝛼 = 0.6)

Figure 3: For larger networks, we plot the improvement inmin. broadcast and influence for low-moderate- and well-spreading 𝛼 .
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(a) Email-EU (Left: 𝛼 = 0.1, Right: 𝛼 = 0.3)

(b) Email-Arenas (Left: 𝛼 = 0.2, Right: 𝛼 = 0.4)

(c) Irvine (Left: 𝛼 = 0.2, Right: 𝛼 = 0.4)

Figure 4: For smaller networks, we plot the distribution of pairwise access proximities for low-moderate- and well-spreading 𝛼 .
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(a) Facebook (Left: 𝛼 = 0.1, Right: 𝛼 = 0.3)

(b) ca-GrQc (Left: 𝛼 = 0.4, Right: 𝛼 = 0.6)

(c) ca-HepTh (Left: 𝛼 = 0.4, Right: 𝛼 = 0.6)

Figure 5: For larger networks, we plot the distribution of pairwise access proximities for low-moderate- and well-spreading 𝛼 .
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(a) Email-EU (Left: 𝛼 = 0.1, Right: 𝛼 = 0.3)

(b) Email-arenas (Left: 𝛼 = 0.2, Right: 𝛼 = 0.4)

(c) Irvine (Left: 𝛼 = 0.2, Right: 𝛼 = 0.4)

Figure 6: For smaller networks, we plot the distribution of pairwise signaturemanhattan for low-moderate- andwell-spreading𝛼 .
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(a) Facebook (Left: 𝛼 = 0.1, Right: 𝛼 = 0.3)

(b) ca-GrQc (Left: 𝛼 = 0.4, Right: 𝛼 = 0.6)

(c) ca-HepTh (Left: 𝛼 = 0.4, Right: 𝛼 = 0.6)

Figure 7: For larger networks, we plot the distribution of pairwise signature manhattan distances for low-moderate- and
well-spreading 𝛼 .
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