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AUTOMATED DECISION-MAKING SYSTE M S  (often 
machine learning-based) now commonly determine 
criminal sentences, hiring choices, and loan 
applications. This widespread deployment is 
concerning, since these systems have the potential 
to discriminate against people based on their 
demographic characteristics. Current sentencing 
risk assessments are racially biased,4 and job 
advertisements discriminate on gender.8 These 
concerns have led to an explosive growth in fairness-
aware machine learning, a field that aims to enable 
algorithmic systems that are fair by design.

To design fair systems, we must agree precisely on 
what it means to be fair. One such definition is 

individual fairness:10 individuals who 
are similar (with respect to some task) 
should be treated similarly (with re-
spect to that task). Simultaneously, a 
different definition states that demo-
graphic groups should, on the whole, 
receive similar decisions. This group 
fairness definition is inspired by civil 
rights law in the U.S.5,11 and U.K.21 Oth-
er definitions state that fair systems 
should err evenly across demographic 
groups.7,13,24 Many of these definitions 
have been incorporated into machine 
learning pipelines.1,6,11,16,25

In this article, we introduce a frame-
work for understanding these different 
definitions of fairness and how they re-
late to each other. Crucially, our frame-
work shows these definitions and their 
implementations correspond to differ-
ent axiomatic beliefs about the world. 
We present two such worldviews and will 
show they are fundamentally incompat-
ible. First, one can believe the observa-
tion processes that generate data for ma-
chine learning are structurally biased. 
This belief provides a justification for 
seeking non-discrimination. When one 
believes that demographic groups are, 
on the whole, fundamentally similar, 
group fairness mechanisms successful-
ly guarantee the top-level goal of non-
discrimination: similar groups receiving 
similar treatment. Alternatively, one can 
assume the observed data generally re-
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observable; they are measured indi-
rectly and imprecisely through self-re-
ported surveys and other proxies.9

Similarly, when considering admis-
sions decisions, it is also important to 
determine what an idealized decision 
should be predicting. An admissions 
office might decide that decisions 
should be made based on the predicted 
potential of an applicant. Since “poten-
tial” is unobservable, systems might 
use more directly measurable—and 
more problematic—features such as 
college GPA upon graduation.

This college admissions example 
demonstrates the basic pipeline in hu-
man decision-making systems, which 
is also mimicked in algorithmic sys-
tems. We decide on idealized features, 
and measure observed, possibly flawed 
versions of these features. We deter-
mine an idealized prediction goal, and 
measure observed features to predict 
an observed goal. We next formalize 
this decision-making framework.

Spaces: Construct vs. Observed 
and Features vs. Decisions
We model an algorithm making deci-
sions about individuals as a mapping 
from a space of information about 
people, which we will call a feature 
space, to a space of decisions, which 
we will call a decision space. We assume 
each space is a collection of informa-
tion about people endowed with a dis-

tance metric (specifically, a function of 
pairs of elements that satisfies reflex-
ivity, symmetry, and the triangle in-
equality). This reflects that a process 
for discovering mappings from fea-
tures to decisions usually exploits the 
geometry of these spaces.

We introduce two types of spaces: 
construct spaces and observed spaces. 
Construct spaces contain an idealized 
representation of information about 
people and decisions. These spaces may 
include unmeasurable “constructs” (for 
example, grit). Observed spaces contain 
the results of an observational process 
that maps information about people or 
decisions to measurable spaces of in-
puts or outputs (for example, the results 
of self-reported surveys designed to 
measure grit). An observational process 
can be noisy, including additional infor-
mation not found in the associated con-
struct space, missing information, or 
even containing a large distance skew in 
the mapping. Observational processes 
don’t have to maintain information that 
is useful for the decision-making task.

These two distinctions—between 
feature and decision spaces and be-
tween construct and observed spac-
es—naturally give rise to four spaces 
that we claim are necessary for analyz-
ing the fairness of a decision-making 
procedure (as illustrated in Figure 1):

The Construct Feature Space (CFS) 
is the space representing the “desired” 

flects the true underlying reality about 
differences between people. These 
worldviews are in conflict; a single algo-
rithm cannot satisfy either definition of 
fairness under both worldviews. Thus, 
researchers and practitioners ought to 
be intentional and explicit about world-
views and value assumptions: the sys-
tems they design will always encode 
some belief about the world.

An Example
We illustrate the practice of fairness in 
decision making with the example of a 
college admissions process. We often 
think of this process as starting with the 
input provided by application materials 
and ending with an admittance deci-
sion. Here, we will take a broader view of 
the process, including the goals of the 
admissions office and an assessment of 
the resulting decisions. In this broader 
view, the first step of the process is de-
termining a set of idealized features to 
be used in an admissions decision.

For example, some consider person-
al qualities such as self-control, 
growth mindset, and grit to be deter-
mining factors in later success.3 Grit is 
roughly defined as an individual’s 
ability to demonstrate passion, perse-
verance, and resilience toward their 
chosen goal. An admissions commit-
tee could decide to use grit as an ideal-
ized predictor. However, grit (and oth-
er idealized features) are not directly 

Figure 1. Our model of algorithmic decision making involves transformations among four spaces.
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of a decision-making process. Thus, we 
define non-discrimination as follows:

Non-discrimination. Groups who are 
similar (with respect to the task) in the 
CFS should, as a whole, receive similar 
decisions in the CDS.

In this work, consider group mem-
bership as a characteristic of an indi-
vidual; thus, each of the four spaces 
admits a partition into groups, induced 
by the group memberships of individu-
als represented in these spaces.

Discrimination manifests itself in 
unequal treatment of groups. To 
quantify this, we first introduce the 
notion of group skew. Given two spac-
es and their associated group parti-
tioning, the group skew of the map-
ping between the spaces is the extent 
to which the groups are, as a whole, 
mapped differently from each other. 
An illustration of group skew between 
the feature spaces is given in Figure 2. 
The goal in any formalization of group 
skew is to capture the relative differ-
ence in the mappings of groups with 
respect to each other, rather than (for 
example) a scaling transformation 
that transforms all groups the same 
way. This can be thought of as quanti-
fying any difference in treatment 
based on group membership.a Thus, 
nondiscrimination is defined as the 
lack of group skew in the mapping 
from CFS to CDS. This notion at-
tempts to capture the idea of fair 
treatment of groups.

a We introduce one possible geometric formal-
ization of group skew in Friedler et al.12

or “true” collection of information 
about people to use as input to a deci-
sion-making procedure. For example, 
this includes features like intelligence 
or grit for college admission.

The Observed Feature Space (OFS) is 
the space containing the observed in-
formation about people, generated by 
an observational process g : CFS → OFS 
that generates an entity p̂ = g(p) from a 
person p ∈ CFS. For example, this in-
cludes the results of standardized tests 
or personal essays.

The Construct Decision Space (CDS) 
is the space representing the idealized 
outcomes of a decision-making proce-
dure. For example, this includes how 
well a student will do in college.

The Observed Decision Space (ODS) is 
the space containing the per-person ob-
served decisions from a concrete deci-
sion-making procedure, generated by an 
observational process mapping CDS → 
ODS. For example, this includes the GPA 
of a student after their freshman year.

To understand the interactions be-
tween these spaces, we start with a pre-
diction task, determine an idealized de-
cision goal, posit features that seem to 
control the decision, and then imagine 
ways of measuring those features and 
decisions. Explicitly considering the ex-
istence of the construct space is rare in 
practice; we argue that explicit goals 
and assumptions are necessary when 
considering fairness. It is worth empha-
sizing here that the construct spaces 
represent our best current understand-
ing of the underlying factors involved in 
a task rather than some kind of Platonic 
universal ideal. They are therefore con-
tingent on the current specific ideas and 
best practices about how to make the 
decision in the given context.

TL;DR

Constructs are the idealized features  
and decisions we wish we could use for deci-
sion-making.

Observed features and decisions are the  
measurable features and outcomes that are 
actually used to make decisions.

These may be different, and it is important 
to be explicit about the distinction.

Fairness and Non-Discrimination
Traditional data science and ma-
chine learning can be understood as 

focusing on creating transformations 
between the observed feature and ob-
served decision spaces. These mecha-
nisms are used in real-world decision-
making practices by taking observed 
data as input. On the other hand, fair-
ness is defined as a property of an ide-
alized construct mechanism that maps 
individuals to construct decisions 
based on their construct features. The 
goal of algorithmic fairness is to de-
velop real-world mechanisms that 
match the decisions generated by 
these construct mechanisms. In order 
to discuss these fairness-aware mech-
anisms further, we first describe dif-
ferent notions of fairness within our 
framework.

Individual fairness. Since fairness 
is an idealized property operating 
based on underlying and potentially 
unobservable information about peo-
ple, it is most natural to define it with-
in the construct spaces. The definition 
of fairness is task specific and pre-
scribes desirable (potentially unob-
servable) outcomes for a task in the 
construct decision space. Since the 
solution to a task is a mapping from 
the construct feature space to the con-
struct decision space, a definition of 
fairness should describe the proper-
ties of such a construct mechanism. 
Inspired by the fairness definition due 
to Dwork et al.,20 we define individual 
fairness as follows:

Individual fairness. Individuals who 
are similar (with respect to the task) in 
the CFS should receive similar deci-
sions in the CDS.

TL;DR

Individual fairness is the goal of giving 
similar individuals similar decisions.

Non-discrimination. While our fair-
ness definition focuses on the individ-
ual, there are often groups that share 
characteristics (such as race, gender, 
and so on) and fairness should be 
considered with respect to these 
group characteristics (or combina-
tions of them) as well. Group mem-
bership is often defined on innate, 
culturally defined, immutable char-
acteristics, or those protected for his-
torical reasons. It is often considered 
unacceptable (and sometimes ille-
gal) to use group membership as part 

Figure 2. An illustration of group skew in 
the mapping between the feature spaces. 

The mapping moves the groups further 
apart in the observed space than they 
were in the construct space, increasing 
the inter-group distance while maintaining 
the intra-group distance.

Group B

Group B

CFS OFS

Group A Group A
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Worldview: What you see is what you 
get. One worldview handles the uncer-
tainty of the observational process map-
ping between any construct and ob-
served space by asserting that the spaces 
are essentially the same with respect to 
the task.

What You See Is What You Get 
(WYSIWYG): The observational pro-
cess between a given construct 
space and observed space main-
tains the relative position of indi-
viduals with respect to the task.

It is common in data science to di-
rectly use any observed data that is avail-
able; doing so without modification or 
further evaluation is an adoption of the 
WYSIWYG worldview and assumption. 
Importantly, a consequence of under-
standing that WYSIWYG is an axiomatic 
assumption is that we can reevaluate 
this assumption.

Worldview: Structural bias. What if 
the construct space is not accurately rep-
resented by the observed space? In many 
real-world applications, the transforma-
tion from construct to observed space is 
non-uniform in a societally biased way. 
To capture this idea, we return to the no-
tion of group skew from the previous 
section. We define structural bias as 
group skew between construct and ob-
served spaces, that is, an observational 
process that treats groups differently. 
Such a process is illustrated in Figure 2.

In the cases where observed data is 
believed to suffer from structural bias, a 
common fairness goal is non-discrimi-
nation—a goal that aims to make sure 
that the group skew that is present in the 
observed data is not found in the result-
ing decisions. Unfortunately, non-dis-
crimination is difficult to achieve direct-
ly since it is defined in terms of the 
construct spaces, and the existence of 
structural bias precludes us from using 
the observed spaces as a reasonable rep-
resentation of the construct spaces (un-
like the WYSIWYG worldview).

Instead, a common underlying as-
sumption of this worldview is that in one 
or both of the construct spaces all groups 
look essentially the same. It asserts there 
are no innate differences between de-
mographic groups. There may still be 
variation between individuals within the 
group, but the assumption is that on the 
whole, for example, as a distribution, 
the groups are essentially the same.

We’re All Equal (WAE). Within a 
given construct space all groups are 
essentially the same.

This axiom could be applied to either 
or both of the construct spaces (CFS and 
CDS). It appears implicitly in much of 
the literature on statistical discrimina-
tion and disparate impact.

There is an alternate interpretation 
of this axiom: the groups are not nec-
essarily equal, but for the purposes of 
the decision-making process, we 
would prefer to treat them as if they 
were. In this interpretation,20 any dif-
ference in the groups’ performance 
(for example, academic achievement) 
is due to factors outside their individu-
al control (for example, the quality of 
their neighborhood school) and 
should not be taken into account in 
the decision-making process. This in-
terpretation has the same mathemati-
cal outcome as if groups are assumed 
equal, and thus a single axiom covers 
both these interpretations.

We reiterate that structural bias—the 
way in which observations are systemati-
cally distorted—is separate from the 
WAE axiom, which is a device that allows 
us to interpret observed skew as a mea-
sure of structural bias.

TL;DR

Any attempt to design fair decision making 
is forced to make assumptions about  
the observational process and/or  
construct space. There are two main such 
assumptions: 

Work that uses the observed data 
directly is making a WYSIWYG 
assumptions; and, 

Work that attempts to guarantee statistical 
parity and other group fairness notions as 
a measure is making a WAE assumption.

Later, we will explore the ways that 
different works have made these as-
sumptions further.

Consequences
We now sketch some consequences of 
attempts to achieve individual fairness 
and non-discrimination under different 
worldviews. A more detailed analysis 
can be found in our extended work;12 
other authors have also started to build 
on the framework we lay out.23

TL;DR

Non-discrimination is the goal  
of giving similar groups on the whole  
similar decisions.

While non-discrimination shares 
many characteristics with the notions of 
group fairness that previous work has 
studied, an important distinction that 
we introduce here is that non-discrimi-
nation is defined as a property of the 
mapping between the construct spaces, 
while group fairness is generally defined 
in practice via group fairness mechanisms 
that restrict mappings between the ob-
served feature and decision spaces. The 
ideas we develop next will allow us to un-
derstand that mechanisms that guaran-
tee group fairness notions are generally 
doing so with the goal of guaranteeing 
non-discrimination, but formalizing the 
relationship between these two notions 
requires axiomatic assumptions about 
the world.

Worldviews and Assumptions
Fairness goals are defined as properties 
of construct mechanisms. Real-world 
decision making, however, must use 
mechanisms that map between the ob-
served spaces. Thus, fair algorithm de-
signers are forced to make assumptions 
about the observational processes map-
ping from construct to observed spaces 
in order to make real-world decisions.

We now describe two such axiomat-
ic assumptions that are motivated by 
associated worldviews. While we intro-
duce these two axioms as different 
worldviews or belief systems, they can 
also be strategic choices. Roemer iden-
tifies the goal of such choices as ensur-
ing that negative attributes due to an 
individual’s circumstances of birth or 
to random chance should not be held 
against them, while individuals should 
be held accountable for their effort 
and choices.20 In our framework, this 
translates to a decision of which axiom 
to choose. In our college admissions 
example, this may be the difference 
between asserting the admissions pro-
cess should serve as a social equalizer, 
so that, for example, applicants from 
different class backgrounds are admit-
ted at approximately the same rate, or 
believing that features such as GPA 
and SAT scores accurately reflect effort 
and understanding.
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with respect to the task in the CFS more 
than is warranted compared to the other 
group; this is discriminatory.

Choice in mechanism must thus be tied 
to an explicit choice in worldview. Under a 
WYSIWYG worldview, only individual 
fairness mechanisms achieve fairness 
(and group fairness mechanisms are un-
fair). Under a structural bias worldview, 
only group fairness mechanisms achieve 
non-discrimination (and individual fair-
ness mechanisms are discriminatory).

TL;DR

Fairness-aware algorithms cannot 
guarantee fairness or non-discrimination 
under both the WYSIWYG and structural 
bias worldviews. Choice in algorithms must 
be tied to an explicit choice in worldview.

Placing Literature in Context
Our framework lets us analyze existing 
literature in fairness (for broader sur-
veys, see Romei et al.21 and Zliobaite27) to 
see what axiomatic positions different 
solutions might implicitly be taking. For 
this analysis, we distinguish papers that 
propose new fairness measures and/or 
interventions from the smaller number 
of papers that provide a metanalysis of 
fairness definitions.

Fairness measures and algorithms. 
Our findings are twofold. First, we find 
we can categorize existing work based 
on fairness measure and associated as-
sumption on the decision spaces. Mea-
sures that assume that existing deci-
sions are correct and optimize fairness 
conditioned on that assumption adopt 
the WYSIWYG axiom between decision 
spaces. Measures that are open to 
changing the observed decisions in the 
data adopt the WAE axiom. Second, 
once we categorize measures based on 
the decision space axiomatic choice, we 
can categorize algorithms based on axi-
oms governing the feature spaces. Algo-
rithms that work to change the data rep-
resentation adopt a viewpoint that the 
data may not be correct, and generally 
do this according to the WAE axiom. Al-
gorithms that make no change to the 
data before optimizing for a measure 
implicitly make the WYSIWYG axiomat-
ic assumption between feature spaces.

Note that it is not a contradiction to 
have an algorithm that, based on its 
measure, assumes WAE in the con-
struct decision space and WYSIWYG 

Mechanisms achieve the goals of 
their worldviews. How can individual 
fairness be achieved? Individual fair-
ness mechanisms are algorithms that 
guarantee that individuals who are sim-
ilar in the observed feature space re-
ceive similar decisions in the observed 
decision space. Under WYSIWYG as-
sumptions on both the feature and de-
cision observational processes, individ-
ual fairness mechanisms can be shown 
to guarantee individual fairness (via 
function composition).

Group fairness mechanisms ensure 
that groups are mapped to, on the 
whole, similar decisions in the ob-
served decision space. Under a WAE as-
sumption (applied to the CFS), group 
fairness mechanisms can be shown to 
guarantee non-discrimination since 
groups are assumed to be essentially 
the same in the construct feature space 
and the mechanism guarantees that 
this is enforced in the mapping to the 
observed decision space.

TL;DR

Under a WYSIWYG assumption,  
individual fairness can be guaranteed.

Under a WAE assumption,  
non-discrimination can be guaranteed.

Conflicting worldviews necessitate 
different mechanisms. Do mechanisms 
exist that can guarantee individual fair-
ness or non-discrimination under both 
worldviews?

Unfortunately, WYSIWYG appears to 
be crucial to ensuring individual fair-
ness: if there is structural bias in the de-
cision pipeline, no mechanism can 
guarantee individual fairness. Fairness 
can only be achieved under the WYSI-
WYG worldview using an individual fair-
ness mechanism and using a group fair-
ness mechanism will be unfair within 
this worldview.

What about non-discrimination? Un-
fortunately, another counterexample 
shows these mechanisms are not agnos-
tic to worldview. Suppose that the con-
struct and observed decision spaces are 
the same and that two groups are very far 
apart in the CFS with images in the OFS 
that are even further apart. Applying an 
individual fairness mechanism to the 
OFS will result in decisions that prefer-
ence the group that performed better 

Researchers and 
practitioners ought 
to be intentional 
and explicit about 
worldviews 
and value 
assumptions—
the systems they 
design will always 
encode some belief 
about the world.
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change the outcomes after the decision 
has been drafted.15 Even though these 
algorithms try to ensure non-discrimina-
tion and assume the WAE axiom in the 
construct decision space, they implicitly 
assume the WYSIWYG axiom between 
the feature spaces by using training data 
without modification. Algorithms for 
achieving fairness on group-conditioned 
error rates13,24 focus on constraining this 
measure using the observed data as giv-
en, so these algorithms assume WYSI-
WYG between the feature spaces. Given 
that these algorithms focused on the 
group-conditioned error rate also as-
sume the WYSIWYG between decision 
spaces, we claim that they adopt the 
WYSIWYG worldview and not a struc-
tural bias worldview. 

Other algorithms perform prepro-
cessing on the training data.11,14,19,26 These 
works can be seen as attempting to re-
construct the construct feature space and 
make decisions based on that hypothe-
sized reality under the WAE assumption.

We turn now to Dwork et al.’s indi-
vidual fairness definition:10 two individ-
uals who are similar should receive 
similar outcomes. Dwork et al. empha-
size that determining whether two indi-
viduals are similar with respect to the 
task is critical and assume such a met-
ric is given. In light of the formalization 
of the construct spaces, we note that 
the metric discussed by Dwork et al. is 
the distance in a combined construct 
space including both features and deci-
sions. As described by Dwork et al., the 
metric is not known. We claim that in 
practice this lack of knowledge is re-
solved by the axiomatic assumption of 
either WYSIWYG or WAE, and since the 
focus is on individual fairness and not 
on groups, the WYSIWYG assumption 
is usually made between both feature 
and decision spaces.

TL;DR

Fairness measure choices encode 
assumptions about the decision spaces. 
Parity-focused notions (for example, 
disparate impact) assume WAE. Error rate 
balance assumes WYSIWYG. 

Intervention algorithm choices encode 
assumptions about the feature spaces. 
Representational approaches assume WAE. 
In-processing and post-processing 
approaches assume WYSIWYG.

between the feature spaces. In fact, 
many algorithms make these dual 
assumptions in practice.

Early work on non-discrimination 
that initiated the study of fairness-aware 
data mining considered the difference 
in outcomes between groups. Specifi-
cally, let Pr [C = Yes |G = 0] be the proba-
bility of people in the unprivileged group 
receiving a positive classification and 
Pr [C = YES |G = 1] be the probability of 
people in the privileged group re-
ceiving a positive classification. 
Calders and Verwer6 introduce the 
idea of a discrimination score defined as 
Pr [C = YES |G = 1] − Pr [C = YES |G = 0]. 
Their goal, and the goal of much subse-
quent work also focusing on this mea-
sure,14,16,22,26 was to bring this difference 
to zero. The assumption here is that 
groups should, as a whole, receive similar 
outcomes. The implicit assumption is 
that the original decisions received by the 
groups (that is, the decisions used for 
training) may not be correct if this differ-
ence is not small. This reflects an underly-
ing WAE axiom in the construct decision 
space. The four-fifths rule for disparate 
impact5,11,25 focuses on a similar measure 
(taking the ratio instead of the difference) 
and also assumes the WAE axiom.

A 2016 ProPublica study4 examined 
the predicted risk scores assigned to de-
fendants by the COMPAS algorithm and 
found that Black defendants were about 
twice as likely to receive incorrect high-
risk scores (bad errors), while White de-
fendants were about twice as likely to 
receive incorrect low risk scores (good 
errors). This inspired the development 
of measures for equalizing the group 
conditioned error rates of algorithms 
(termed “equal odds”13 or “disparate 
mistreatment”24), with the idea that dif-
ferent groups should receive the same 
impact of the algorithm conditioned on 
their outcomes. This implicitly assumes 
the observed outcomes (observed deci-
sion space) reflect true decisions, that is, 
these measures assume the WYSIWYG 
axiom between the decision spaces. It is 
interesting that while these classes of 
measures are all considered group fair-
ness measures, they make different as-
sumptions about the decision spaces.

Axiomatic assumptions about fea-
ture spaces are determined by the choice 
of algorithm. Some works attempt to en-
sure non-discrimination by modifying 
the decision algorithm6,16 while others 

Discrimination 
manifests itself  
in unequal 
treatment  
of groups.
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Fairness meta-analyses. Further 
examination of group fairness mea-
sures prompted the discovery of the 
mutual incompatibility of error rate 
balance (for both positive and nega-
tive classifications) and equality of 
per-group calibration (a measure in-
dicating if a score is correctly predict-
ing gradated outcomes). These con-
straints cannot be simultaneously 
achieved unless the classifier is per-
fect or the base rates per group are 
equal.7,17 Since these measures natu-
rally make a WYSIWYG assumption 
between the decision spaces, this im-
possibility result only holds under 
this axiom. In fact, the case under 
which it no longer holds—the base 
rates per group being equal—is one 
possible codification of the WAE axi-
om in the construct decision space.

TL;DR

Fairness impossibility results7,17 hold under 
the WYSIWYG axiom between the decision 
spaces. These results do not hold under the 
WAE axiom between decision spaces. 

Meta-analyses should make their axiomatic 
assumptions explicit and consider both 
measures and algorithms.

Discussion and Conclusion
Our main claim in this work is that dis-
cussions about fairness algorithms 
and measures should make explicit 
the implicit assumptions about the 
world being modeled. The focus by tra-
ditional data science techniques on 
the observed feature and decision 
spaces obscures these important axi-
omatic issues. The default assumption 
in these traditional data science and 
machine learning domains is the 
WYSIWYG assumption; the data is tak-
en as given and fully representative of 
the implicit construct spaces. In this 
work, we highlight that this WYSIWYG 
assumption should be made purpose-
fully and explicitly.

When considering fairness-aware 
algorithms applied to a specific do-
main, all assumptions are not equally 
reasonable. There is extensive social 
science literature demonstrating the 
existence of structural bias in criminal 
justice,2 education,18 and other fair-
ness-critical domains. In these do-
mains, it is not reasonable to make the 

WYSIWYG assumption. Data science 
practitioners must work with domain 
experts and those impacted by result-
ing decisions to understand what as-
sumptions are reasonable in a given 
context before developing and deploy-
ing fair mechanisms; without this 
work, incorrect assumptions could 
lead to unfair mechanisms.

Additionally, our framework sug-
gests ways in which the current discus-
sion of fairness measures is mislead-
ing. First, group and individual notions 
of fairness reflect fundamentally dif-
ferent underlying goals and are not 
mechanisms toward the same out-
come. Second, group notions of fair-
ness differ based on their implicit axi-
omatic assumptions: mathematical 
incompatibilities should be viewed as 
a formal statement of this more philo-
sophical difference. And finally, and 
perhaps most importantly, comparing 
definitions of fairness is incomplete 
without also discussing the deployed 
interventions: it is the combination of 
measure and algorithm that describes 
a fully specified worldview in which the 
system operates.
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