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ABSTRACT
Voter suppression and associated racial disparities in access to vot-

ing are long-standing civil rights concerns in the United States.

A history of violent explicit discouragement has shifted to more

subtle access limitations that can include long lines and wait times,

long travel times to reach a polling station, and other logistical bar-

riers to voting. Our focus in this work is on quantifying disparities

in voting access pertaining to the overall time-to-vote, and how

they could be remedied via a better choice of polling location or

provisioning more sites where voters can cast ballots. However,

appropriately calibrating access disparities is difficult because of the

need to account for factors such as population density and different

community expectations for reasonable travel times.

In this paper, we perform one of the first large-scale studies of

voter access to polling locations, using real-world voter data from

Florida and North Carolina in the 2020 general election. We de-

velop a methodology for the calibrated measurement of disparities

in polling location "load" and distance to polling locations based on

a novel normalized distance metric to model the voter experience

of distance. We find that voter turnout is reduced when this nor-

malized distance to polling locations increases, and that non-white

voters had to travel further to the polls in Florida (using this nor-

malized distance) than White voters. We also introduce algorithms,

with modifications to handle scale, that can reduce these disparities

by suggesting new polling locations from a given list of identified

public locations (including schools and libraries). The developed

voting access measurement methodology and algorithmic remedia-

tion technique demonstrates that better polling location placement

is possible.
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1 INTRODUCTION
Convenient access to voting is a crucial component of U.S. elec-

tions, and such access has been shown to have an impact on voter

turnout—voters who have to travel further to the polls or wait

longer are less likely to vote [9, 25, 42]. Longstanding historical and

continuing discriminatory efforts have targeted and suppressed

Black voter access to the polls in the United States [4]. For exam-

ple, in the 2016 US presidential election, voters in predominantly

Black neighborhoods waited 29% longer at polling locations than

those in white neighborhoods [11]. In this paper, we study voting
access and racial disparities through the lens of distance from vot-

ers to their polling locations as well as the number of people per

assigned polling location in Florida and North Carolina in the 2020

U.S. general election.

1.1 Related Work
There exist a rich literature on polling location placement and the

way that the “cost" of voting impacts voter turnout, with “cost"

including the distance to polling locations [7, 10, 20, 25], voter wait

times [11, 42], and other logistical barriers [16]. There is general

wide-spread agreement across this literature that increasing dis-

tance to polling locations decreases voter turnout [9, 10, 20, 25],

though studies in some locations find no effect [7]. Mechanisms

for study include individual voter distances to polling locations

[20, 28, 30], precinct-based averages [25], as well as analyses that

consider discrepancies on the boundaries of precincts [7, 10] and

changes to polling locations [9, 15] as ways to control for multiple

other factors. Studies have been conducted at the municipal [28]

and county level [9, 20, 25], including counties with both urban

and rural sectors [20], and recent state-wide studies using precinct

boundary [7] and polling location change [15, 49] designs. To our

knowledge, there have not been state-wide studies of polling dis-

tance and turnout with a design that allows for the inclusion and

analysis of all state voters.
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The role distance to polling stations plays in turnout is compli-

cated by and correlated with income, race, neighborhood density,

and other factors that make it hard to directly examine the impact

of distance [7, 10, 20, 25, 28, 45]. Some studies have documented

nonlinearities in the relationship of voter turnout to polling loca-

tions, with rural voters far from polling locations demonstrating

a surprising increase in turnout [20, 25]. Hypotheses for this phe-

nomenon include increased use of mail-in voting [7, 15, 20, 24] and

more direct and uncongested travel routes in rural areas [25]. There

is also evidence that vehicle availability plays a role in voter turnout

based on polling location distance [10, 28], and some studies have

considered the potential for political manipulation of polling site

locations for partisan gain [30, 45, 47]. Attempts to disaggregate

race from other correlated factors have found that Black and His-

panic voters on average live closer to the polls, but do not exhibit

differences in sensitivity to polling location distance [7] or evidence

of race-based partisan manipulation of polling locations [45]. Voter

cost as measured by waiting time has been shown to differ markedly

by race [11] and longer wait times decrease future voter turnout

[42].

A few efforts have considered the placement and impact of better

placement of polling locations [7, 10, 30]. These efforts focus on

increasing overall turnout by considering a change in placement of

polling locations in: one precinct by hand as a demonstration [30],

across nine municipalities by considering census block populations

with weighted distances to polling locations [10], and in one state

by determining a voter turnout model and choosing a turnout-

maximizing location. However, there has been little to no research

emphasizing equitable access to voting. The main algorithmic tools

we use are drawn from the literature on fair clustering [3, 6, 12–

14, 33, 34, 37, 41, 43, 44, 48], a sub-field of algorithmic fairness [2, 19,

22, 27, 35, 50] which has gained a lot of attention in recent years. Fair

clustering has often been used as a tool for redistricting [23, 36, 39]

and even fairness in redistricting [46]. The closest related work to

the fair polling location algorithms we introduce are in the context

of facility location (e.g. [17, 18, 38]); however, previously proposed

solutions often are either tailored to specific problems or cannot

scale to the data sizes we consider here.

1.2 Our Contributions
In this paper we develop a novel methodology to quantify and

calibrate disparities in access to voting using measures that act

as proxies for the time taken to travel to a polling station and

the waiting time to vote. This investigation is conducted within a

specific context: that of racial voter access disparities in Florida and

North Carolina during the 2020 general election. Previous studies

have identified that there are many confounding factors when

analyzing the experience of distance to a polling location, such as

vehicle access and community norms for reasonable travel times

[7, 10, 20]. We introduce a normalized distance based on distance

to the closest school or library that allows voter turnout trends to

be more clearly understood and racial differences analyzed. The

use of this normalized distance allows a study design that includes

all voters across two states with individual geocoded distances to

polling locations.

We find a clean trend of decreasing voter turnout when the

normalized distance increases. We found that when normalized

distances are considered, non-white voters in general had to travel

further to the polls in Florida while in North Carolina any racial

disparity in travel was smaller. There was some racial variation in

“load” (our proxy for the waiting time to vote) but this did not sug-

gest any substantive impact. We further develop scalable algorithms

that can redistribute polling locations so as to improve access dis-

parities. These polling location placement algorithms are able to

use realistic options for polling sites, such that their outcomes are

actionable. Our algorithmic interventions (both to minimize travel

time as well as waiting time) improved access disparities across

the board, while making visible any tradeoff between disparity

mitigation and resources required.

2 DATA COLLECTION AND PREPROCESSING
To conduct our study, we need voter registration information (in-

cluding voter race and address), polling location information, as

well as latitude and longitude for each address as well as for alter-

nate or new polling locations introduced. This latter determination

is known as geocoding, and is relatively difficult and costly. The final

data collected presents additional privacy risks to voters beyond

what is publicly available and thus we do not make this data public.

2.1 Voting rolls and polling location data
Voting rolls, or voter registration data, usually include the name,

address, other voting-related information, and race for all registered

voters. Florida and North Carolina were chosen as focus states for

our case study because the states are large, have substantial non-

white populations, and provide freely available voting rolls that

include race information.
1
There are approximately 15.1 and 7.3

million voters in the records for Florida and North Carolina, respec-

tively. Data collected for both states for each voter included: voter’s

residential address; county, precinct, and congressional district in-

formation to determine the voter’s associated precinct location;

and race as defined in the voting rolls. For the analysis of voter

turnout in Section 3.3 this data was augmented with information

about whether the individual voted on Nov. 3, 2020 (available from

the same sources).

Both Florida and North Carolina require their residents to vote at

the polling place designated to their precinct,
2
and we use the terms

polling location and precinct site interchangeably. We collected all

polling location addresses for Florida andNorth Carolina
3
and deter-

mined each voter’s polling location based on their listed county and

precinct information from the voting rolls. 6068 and 2662 polling

sites are listed in the Florida and North Carolina records, respec-

tively. In order to calibrate distances to local understandings of

1
Florida voting rolls originally accessed via http://flvoters.com/downloads.html, now

available at https://web.archive.org/ or by mail request from https://dos.myflorida.com/

elections/data-statistics/voter-registration-statistics/voter-extract-disk-request/. Our

analyses use the 10/13/2020 data. North Carolina voting rolls are available at: https://

www.ncsbe.gov/results-data/voter-registration-data. Our analyses use the 11/03/2020

snapshot.

2
https://dos.myflorida.com/elections/for-voters/voting/election-day-voting/, https:

//www.ncsbe.gov/voting/vote-person-election-day

3
Florida polling locations were downloaded from https://dos.myflorida.com/elections/

for-voters/voting/. North Carolina polling locations were downloaded from: https:

//www.ncsbe.gov/results-data/polling-place-data. Our analyses are based on the No-

vember 2020 general election polling locations.
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travel times (see Sect. 3) and to identify potential alternative polling

location sites (see Sect. 4), we collected the addresses of all schools

and libraries in Florida and North Carolina.
4
In total, the addresses

for 5128 and 3265 schools and libraries were collected in Florida

and North Carolina, respectively. Schools and libraries were cho-

sen since these are public sites that are generally well-distributed

around a state and are often sites chosen to serve as polling loca-

tions.

2.2 Geocoding addresses
To measure voter distance to the nearest polling location, we need

to geocode voter residence, polling location, and schools or libraries

that could serve as possible polling locations. We used the ArcGIS

tool
5
for our geocoding queries. In the ArcGIS geocoder, a match

score controls how closely addresses have to match their most likely

candidate in the reference data. The minimum match score is set to

the default value (80), as are all other internal parameters. When

geo-locating an address, the address is compared to records in a

database which each have an associated latitude and longitude. The

record with the highest match score with that address is chosen as

the match and that record’s associated latitude and longitude are

assigned to the address. If there are no records with a match score

above the minimum match score, no match is returned. By using

the default minimum match score of 80, we allow for some spelling

mistakes and other slight address differences between the address

and its match, while maintaining a high degree of match accuracy.

2.3 Missing data analysis
In order to ensure that no eligible voters were missing from our

voting rolls, we chose the latest possible voting roll snapshot that oc-

curred before the 2020 general election. To validate its completeness,

we compared to the public voter turnout rates. In North Carolina,

we calculate an overall voting rate of 75.0%, which matches exactly

with official reports on voter turnout.
6
After dropping individuals

without a geolocated home address or polling location, we still

calculate a 75.0% voting rate. In the Florida data, we found that

some voters who did vote in the Nov. 3, 2020 general election were

not present in the latest pre-election voter roll data (Oct. 13, 2020),

perhaps because of a lag in reporting registrations. Additionally, the

voter rolls we consider include more people than represented in the

official turnout numbers, possibly due to voter removal from the

rolls just before the election
7
or due to differences in which voters

are countered as part of this rate. The resulting voter turnout rate in

our data is 72.2%, which differs from official reports of 77.2%.
8
After

dropping individuals with polling locations or addresses that we

were not able to geocode, we are left with an overall rate of 71.6%.

4
Florida school addresses were downloaded from https://web03.fldoe.org/Schools/

schoolreport.asp and library addresses from https://publiclibraries.com/state/florida/.

North Carolina school addresses were downloaded following the instructions at

https://files.nc.gov/dpi/documents/fbs/accounting/eddie/createreport.pdf and library

addresses from https://statelibrary.ncdcr.gov/ld/about-libraries/library-directory/

download.

5
https://desktop.arcgis.coml

6
https://www.ncsbe.gov/results-data/voter-turnout

7
See, e.g., https://www.tallahassee.com/story/news/politics/elections/2022/11/04/

florida-desantis-election-crimes-unit-removal-felons-voting-rolls/8256072001/.

8
https://results.elections.myflorida.com/Index.asp?ElectionDate=11/3/2020

We proceed with our analyses using this Oct. 13, 2020 snapshot of

Florida voting rolls.

Our lists of valid polling locations, schools, and libraries are fully

complete.
9
However, the geocoding process did not successfully re-

turn latitude and longitude matches for all given addresses; in some

cases, the provided address was misspelled, incomplete, or poten-

tially missing from the ArcGIS database. Within each state, approx-

imately 91 percent of voter addresses were successfully geocoded.

In Florida, 6068 out of 5159 polling locations were successfully

geocoded, and in North Carolina it was 2250 out of the 2662 polling

locations. Of the school and library addresses, 4499 and 2711 were

successfully geocoded and used in the analyses for Florida and

North Carolina, respectively.

Voters with residential addresses or polling locations that could

not be geocoded were excluded from the data used for analysis in

the remainder of this paper, as were polling locations that could

not be geocoded. Specifically, in all the following analyses 11.8

and 5.3 million voter records were included for Florida and North

Carolina, respectively. In order to ensure this missing data did

not skew our voting access disparity analysis, we conducted a

missing data analysis. We verified that a) the geocoding success

rates were not themselves racially skewed, and showed that b) the

resulting racial distributions for both states were similar to the

original distributions (see Appendix A for details).

3 VOTING ACCESS DISPARITIES IN FLORIDA
AND NORTH CAROLINA

In this section, we examine the accessibility of polling sites in the

2020 general election by race as categorized in the Florida and

North Carolina voter registration data. We consider two measures

of access to polling places:

Distance: We use the great-circle distance
10

as a proxy for the

travel distance/time it takes for voters to get to their assigned

polling site.

Polling site load: For each voter, we use the number of voters

assigned to a polling place as a proxy for their wait time. We

assume that all polling sites process votes at the same rate.

These measures are not be perfect proxies for the time it costs
voters to participate in elections. Geographic distance does not

account for variability in travel times in different areas - such in-

formation is available via APIs, but was not viable for this analysis

given the expense. The polling site load values do not account for

differences in number of machines, impact of voter identification

requirements, or other voter processing time differences that may

be significant and different by demographic group [32]. However,

these measures provide us with an attainable yet useful enough

tool to analyze and compare voters’ access.

3.1 Distances and polling site loads
The results in Figure 1 give the distance and polling site load for

voters, broken down by race, in Florida and North Carolina. We

observe that in Florida, White voters travel the longest distance

9
To the best of our knowledge, the sources we used to gather addresses for polling

locations, schools, and libraries in each state provide a complete list of all such locations.

10
See: https://en.wikipedia.org/wiki/Great-circle_distance. This is also known as the

distance “as the crow flies."
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Florida North Carolina

Race

Distance (miles)

Polling Load

(# Voters)

Mean Med. Max Mean Med.

Wht. not Hisp. 1.26 0.92 35.32 4805 4272

Hispanic 0.89 0.68 28.51 4374 3824

Blk. not Hisp. 0.87 0.66 35.32 4160 3604

Unknown 0.97 0.73 35.32 4460 3905

Asn./Pac. Isl. 1.05 0.85 17.36 4903 4395

Other 1.04 0.79 20.04 4758 4237

Multi-Racial 1.02 0.78 16.11 4729 4216

Amer. Ind. 1.24 0.86 22.96 4656 4079

Overall 1.12 0.82 35.26 4628 4079

Race

Distance (miles)

Polling Load

(# Voters)

Mean Med. Max Mean Med.

White 1.69 1.27 40.67 3503 3105

Black/Afr. Amer. 1.32 0.92 21.55 3581 3106

Undesignated 1.51 1.10 25.68 3750 3302

Other 1.40 1.03 16.87 3922 3418

Asian 1.23 0.95 18.18 4204 3740

Amer. Ind./AK Nat. 1.97 1.54 15.99 2751 2397

Two or more races 1.32 0.94 16.06 3802 3327

Nat. Haw./Pac. Isl. 1.65 1.16 9.37 3922 3326

Overall 1.58 1.16 40.62 3561 3127

Figure 1: Florida (left) and North Carolina (right) distance and polling site load values, broken down by race. Distance is
measured based on the mean, median, and maximum distance (in miles) for voters to their closest polling location. Polling side
load gives the mean and median values for number of voters assigned to each racial group’s polling locations. Maximum values
are the same across all groups; the maximum size polling location for Florida is 18369 and for North Carolina is 13669. The
(non-weighted) numbers across all voters is given for all measures in the last row.

to polling locations among the groups with respect to both mean

and median values. Asian or Pacific Islander voters have the largest

number of voters at their respective polling places. In North Car-

olina, American Indian voters experience the longest trip to polling

locations while Asian voters encounter the most crowded polling

locations. Prior studies have shown that variations in distance to

polling sites, even as small as those observed in Figure 1, can have

a significant effect on voter turnout [28].

3.2 Normalized distances and polling site loads
The same distance to the polls might be perceived differently in

rural as opposed to urban areas, due to factors such as differences in

road traffic, differences in access to personal vehicles, or the norm

for everyday travel distances (see, e.g., [25]). In order to determine

whether the disparities we observed based on the measured dis-

tances to polling locations (in miles) are burdensome or otherwise

unusual in voters’ lives, we next explore two different methods for

normalizing these distances.

Distance Normalization: Schools and libraries. In the first,

we consider the distance to a polling location relative to other

distances that voters might travel regularly and which might be

considered reasonable. For this analysis, we choose to use schools

and libraries as reference locations, with the motivation that these

sites are distributed so that all residents have access to a local

school and library. An important caveat is that this choice may hide

voting access disparities that accrue to the same voters as school

and library access disparities. However, our additional analyses

in Sections 4 and 5 will consider the possibility of opening new

polling locations, and since schools and libraries also serve as good

polling locations, they provide for a useful analysis reference.

Distance Normalization:Median pairwise distance to other
voters. In order to normalize based on residential density (which

may impact voter turnout [25]), we estimate how densely populated

each voter’s neighborhood is based on the median of their pairwise

distances to other voters in their precinct. For each voter, we find

this median and divide the voter’s absolute distance to their polling

site by that median.

Load Normalization. In order to normalize the polling site

loads, we divided each group’s median site load by that of the

majority group, i.e. White voters in both states. Thus, White voters

will always have a normalized load of 1.

In Figure 2 the normalized distances to voting locations and

loads are presented for Florida and North Carolina voters. We note

that although called distances, these values are ratios and cannot

be compared to the values in Figure 1 directly. Instead, our goal

here is to bring into attention how considering normalized dis-

tances changes the ordering among different races in terms of their

distance to polling locations. In the state of North Carolina for

example, on average American Indian voters experience the largest

distance to polling locations while Black voters have the shortest

travel distance when absolute distances are considered (Figure 1).

However, when normalized distances are considered as presented

in Figure 2, the conclusions change. When normalizing to the near-

est school or library, Black voters face the longest average travel

distance to their polling site and White voters the shortest in both

Florida and North Carolina. In Florida, this pattern is the samewhen

considering the median of school/library normalized distance. In

North Carolina, this pattern changes when considering the median.

Normalizing to voter density tells a slightly different story, particu-

larly in North Carolina, where Asian voters experience the longest

mean density-normalized travel distance and American Indian and

Alaskan Native the shortest. This highlights the importance of care-

ful consideration of how distance to polling location is measured.

Different choices among reasonable alternatives can lead to differ-

ent conclusions about which group is most privileged with respect

to polling access. Ultimately, the numbers themselves cannot tell

us which normalization scheme (if any) is most appropriate and we

must rely on common sense and contextual understanding to make
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Florida, normalized access North Carolina, normalized access

Race

Normalized Distance Norm.

school/lib. voter dist. Load

Mean Med. Mean Med.

Wht. not Hisp. 1.65 1.09 1.19 1.02 1

Hispanic 1.86 1.26 1.35 1.10 0.89

Blk. not Hisp. 1.98 1.24 1.20 1.02 0.84

Unknown 1.84 1.21 1.29 1.06 0.91

Asn./Pac. Isl. 1.90 1.22 1.26 1.07 1.02

Other 1.84 1.18 1.26 1.05 0.99

Multi-Racial 2.02 1.22 1.26 1.05 0.98

Amer. Ind. 1.76 1.15 1.15 1.01 0.95

Race

Normalized Distance Norm.

school/lib. voter dist. Load

Mean Med. Mean Med.

White 1.69 1.01 1.08 0.98 1

Black/AfAm. 1.95 1.05 1.09 0.98 1.00

Undesignated 1.83 1.04 1.11 0.99 1.06

Other 1.83 1.06 1.14 1.02 1.10

Asian 1.82 1.07 1.21 1.06 1.20

AmerInd./AKNat. 1.91 1.00 0.92 0.90 0.77

Two+ races 1.90 1.05 1.13 1.01 1.07

NatHaw./PacIsl. 1.77 1.05 1.10 0.98 1.07

Figure 2: Mean and median distance to polling location, normalized by distance to closest school/library or median distance to
other voters in the precinct. Load is normalized to the median load experienced by the majority group.

a subjective determination of which metric is most appropriate in

this case.

The median of the nearest school or library-normalized distance

is useful for assessing access disparities based on distance to polling

location. As discussed above, it is a reasonable proxy for the dis-

tance a person regularly travels for everyday tasks. We prefer it to

the median pairwise distance normalization because this method

for normalization may behave unintuitively for residents of multi-

family housing. For example, residents of a large apartment build-

ing would likely have very small median distance to other voters

in their precinct, which may not reflect the distance they regu-

larly travel. Going forward, we present our results in terms of the

school/library-normalized distance.

3.3 Effects of distance on voter turnout
Finally, we explore the relationship between (normalized) distance

to polling location and voter turnout. For each state, we place indi-

viduals into one of 100 bins based on the quantile of their calculated

distance to the polls. Within each bin, we calculate the rate at

which those individuals voted. The average distance to the polls

for individuals in that bin is then plotted versus the rate (with a

trend line produced via Loess smoothing) in Figure 3 (top row).

Figures plotting the voting rate by distance percentile (which tends

to exaggerate the effects of outliers along the x-axis less) as well

as curves disaggregated by race are given in the Appendix. Sur-

prisingly, voting rate increases as voters get farther from the polls,

finally decreasing very slightly for voters very far from their polling

location. We note that there are very few voters who travel these

long distances, so for the vast majority the trend is simply increas-

ing as a function of distance. This result seemingly contradicts the

literature (see Sec. 1.1); however it does not account for neighbor-

hood density, vehicle access, or other factors known to be relevant

to the causal interaction between poll distance and voter turnout.

In order to account for the voter experience of distance—whether

their polling location is closer or farther than locations they reg-

ularly travel—we repeat this analysis by dividing by the distance

to the nearest school or library. Once again, we threshold this nor-

malized distance, creating 100 equally sized bins, and consider the

average normalized distance within that bin versus its voting rate

(see Figure 3 bottom row). From these figures, a tidier story emerges

in which the farther from the polls voters live (normalized for typi-

cal travel times), the less likely they are to vote. These effects can be

significant: those with polls that are about the same distance from

their residence as other amenities (i.e. a normalized distance of one)

in both states had voter turnout 1% and 1.4% higher than voters

whose distance to the polls was twice that of the distance to other

amenities in North Carolina and Florida, respectively. Similarly,

voters whose normalized distance was five (i.e. had to travel 5 times

farther to their polling location than they did to other public ameni-

ties) saw voter turnouts that were 2.8% and 2.6% lower. In tight

elections, even small differences like these can make a difference.

This analysis thus offers a simple methodology to study the

relationship between voter turnout and distance from the polls that

contextualizes distance relative to the typical distances voters travel.

Other large-scale state-wide research in this area has used precinct-

boundary designs (including only voters on opposite sides of a

precinct boundary) or polling location change designs (including

only voters whose polling place has changed) [7, 10, 47], and thus

necessarily excludes some voters and may miss effects if this creates

selection bias. The cleanness of our results are suggestive that

the normalization we introduce here identifies realistic trends and

accounts for many of the factors that other research in this area

has accounted for while still allowing the inclusion of all voters in

the analysis and providing a true state-wide study of voter turnout.

4 ALTERNATIVE SELECTION FOR POLLING
PLACES: ALGORITHMS

Having established a way to measure disparities in access to voting,

can we determine where to place polling locations so as to reduce

these disparities? In this section, we propose algorithms to reduce

access disparities in terms of both distance and load. These methods

are scalable and work on the large input sizes necessary to handle

states such as Florida and North Carolina. We formulate this prob-

lem as different versions of the well-known 𝑘-median and 𝑘-center

discrete clustering problems. In both these problems, we are given

a set of points 𝑋 (the voters) and facilities 𝐹 (polling locations) in

a metric space and the goal is to choose 𝑘 facilities from 𝐹 and
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Figure 3: The average distance per bin (top row) and the average normalized distance per bin (bottom row) versus the voting
rate for that bin. Bins were determined by thresholding distance such that we create 100 equally sized bins, where the 𝑖th bin
represents all the people in the 𝑖th percentile of the distance from the poll distribution.

assign each point in 𝑋 to its nearest facility so that the overall cost

(measured either as the sum of distances or the maximum distance)

is minimized. In general, one assumes that 𝐹 = 𝑋 , but we will

distinguish the two sets in our setting.

We solve variants of the standard 𝑘-median and 𝑘-center al-

gorithms with additional constraints that enforce the fair access

criteria. Our approach here is an extension to the fair clustering lit-

erature which has gained momentum in the past few years [3, 6, 12–

14, 33, 34, 37, 41, 43, 44, 48]. To ensure the developed algorithms

can be applied to large datasets, we employ the concept of core-
sets. Given a problem (e.g. 𝑘-median), coresets are small, weighted

subsets of large datasets such that the solutions to the problem

found on subset are provably close to the solutions found on the

original dataset [5]. Our methods first summarize the massive voter

dataset 𝑋 using coreset construction algorithms, and then feed the

summarized versions into fair clustering algorithms to produce the

desired result.

We introduce three solutions that provide more equitable alter-

natives to the original polling location assignment: 1) minimize

the maximum distance to polling places across different race cate-

gories while ignoring load balance; 2) build upon the first method

to identify location that also provide a more balanced distribution

of voters, at the cost of opening additional polling locations; and

3) use an alternative approach to address both distance and load

simultaneously without requiring additional polling locations. All

these solutions come with their own advantages and limits.

4.1 Group fair distances
The problem of selecting a predetermined number of polling places

and assigning exactly one to each voter, so that the overall distance

between voters and polling places is minimized, can be formulated

via the well-known problem of 𝑘-median clustering. The objective

in the 𝑘-median algorithm is to select 𝑘 centers (i.e polling loca-

tions) so as to minimize the sum of the distances between points

and their associated center: argmin𝐶

∑
𝑝∈𝑋 ∥𝑝−𝐶 (𝑝)∥ where𝐶 (𝑝)

denotes the center point 𝑝 is assigned to. This formulation of the

𝑘-median problem can result in arbitrarily large distances for cer-

tain sub-populations within voters, as long as the overall average

distance is minimized. This is a problem in the context of polling

as it may hinder certain individuals’ ability to cast their vote, due

to longer than necessary travel distances. We formulate this via a

variant of the fair 𝑘-median clustering problem introduced in [1]

and introduce an algorithm to address this issue.

Definition 1 (Fair 𝑘-median clustering). Given 𝑚 groups 𝑋 =

𝑋1∪· · ·∪𝑋𝑚 , a fair 𝑘-median clustering algorithm returns 𝑘 centers

so as to minimize the maximum average distance to centers across

all groups.

argmin

𝐶∈C
max

(
1

|𝑋1 |
cost𝐶 (𝑋1), . . . ,

1

|𝑋𝑚 | cost𝐶 (𝑋𝑚)
)

where C is the set of all choices of cluster centers, and cost𝐶 (𝑋𝑖 ) is
the sum of distances for group 𝑋𝑖 in clustering 𝐶 .

In the context of polling and the concern around racial dispari-

ties, each group 𝑋𝑖 in the above definition represents voters of a

particular race (based on voter roll categories). To solve the fair
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𝑘-median clustering problem, [1] first solve an associated linear

program and use a faithful rounding procedure to choose exactly

𝑘 centers. When voters’ addresses can be selected as centers, this

method results in expected approximation factor of 4 [1]. Unfortu-

nately, directly using this linear programming-based method is not

realistic because it would be prohibitively slow or even impossible

when determining polling locations for millions of voters. There-

fore, instead of processing the entire input data we propose to use

its coreset [5]. Denote the average cost of standard and fair𝑘-median

clustering on point set 𝑋 as cost𝐶 (𝑋 ) and cost
𝑓

𝐶
(𝑋 ) respectively,

where 𝐶 is a set of 𝑘 centers.

Definition 2 ((𝑘, 𝜖)-coreset for 𝑘-median). Given a point set 𝑋 in

a metric space, the (𝑘, 𝜖)-coreset for 𝑘-median is a weighted subset

𝑆 of𝑋 , where for each𝐶 with size 𝑘 : (1−𝜖)cost𝐶 (𝑋 ) ≤ cost𝐶 (𝑆) ≤
(1 + 𝜖)cost𝐶 (𝑋 )

Theorem 4.1. Given point set 𝑋 = 𝑋1 ∪ ... ∪ 𝑋𝑚 as input, let 𝑆𝑖
be a (𝑘, 𝜖)-coreset for group 𝑋𝑖 , 𝑖 ∈ 1, ...,𝑚, separately. Then for all𝐶 :
(1−𝜖)cost𝑓

𝐶
(𝑋 ) ≤ cost𝑓

𝐶
(𝑆) ≤ (1+𝜖)cost𝑓

𝐶
(𝑋 ) where 𝑆 = 𝑆1∪...∪𝑆𝑚 .

Theorem 4.1 (proof is in Appendix D.1) suggests that given a

large point set as input one can run any fair 𝑘-median algorithm

(as defined in Definition 1) on the union of its groups’ coresets, and

find a clustering with an objective value arbitrarily close (within 𝜖

factor) to that of running the same algorithm on the original set.

For our coreset construction we use the algorithm proposed by

Feldman and Langberg in [21]. In the first step, it uses a bi-criteria

𝑘-median clustering algorithm as a subroutine to find initial centers,

and assigns weights to each point in the original set based on its

distance to the closest center.
11

In our implementation for (𝛼, 𝛽) bi-
criteria 𝑘-median algorithmwe use the method due to Indyk [29]. In

the second step the points are sampled according to the distribution

implied by the assigned weights, and their union with bi-criteria

centers are returned as a weighted coreset. If the original point set

is defined in a metric space (which is the case in our dataset), then

with probability 1 − 𝛿 this algorithm returns a weighted 𝜖-coreset

of size
𝑐
𝜖2
(𝑘 log(𝑛) + log(1/𝛿)) where 𝑛 is the input size and 𝑐 is

a large enough constant. In our implementation this algorithm is

used to construct a coreset for every group and the union of these

coresets is fed into the fair clustering algorithm to find a distance

fair assignment.

In order to empirically evaluate the effectiveness of using core-

sets from Theorem 4.1, we compare the results of running regular

and fair 𝑘-median clustering algorithms on a sample dataset, to

the corresponding values achieved on its coreset. For this purpose

we randomly selected 4000 and 1000 White and Black voters from

North Carolina voter records, respectively. The results of regular

and fair 𝑘-median algorithms on this sample and its coreset are

summarized in Appendix Figure 10; the objective values achieved

by running both algorithms on the coreset are very close to the

values from the entire sample data, which corroborates the results

of Theorem 4.1. Both theoretical and empirical results demonstrate

that we can use coresets in our analysis and achieve near optimal

results. We return to assessing this algorithm on our Florida and

North Carolina data in Section 5.

11
An (𝛼, 𝛽 ) bi-criteria𝑘-median clustering algorithm opens up to 𝛽 ×𝑘 centers, which

results in an objective cost smaller than 𝛼 times the optimal solution.

4.2 Group fair distances and balanced
assignments

A fair 𝑘-median framing of the problem of access can address con-

cerns around traveling to a polling station. But as we have pointed

out earlier, another component of the overall time it takes to vote

is the load at the polling station itself. The problem of opening and

assigning polling locations to voters so that the overall distance

to polling places is minimized while maintaining a balanced distri-

bution of voters per location, can be formulated via the balanced
𝑘-median clustering problem

12
where each facility comes with a

capacity constraint on the number of points that can be assigned

to it. Previous algorithms for the balanced 𝑘-median either violate

the capacity constraint or the cardinality (number of centers) con-

straint. In this section we opt for a method which may open more

centers but maintains the capacity constraint. We start by assuming

that all facilities have a uniform capacity 𝐿. We call the fair variant

of this problem 𝐿-balanced fair 𝑘-median clustering. Bateni et al. [8]
demonstrated how an approximate solution to the 𝑘-median clus-

tering problem can be transformed into an approximate bicriteria

solution for the 𝐿-balanced 𝑘-median clustering with slightly worse

approximation factors. We closely follow their approach and show

this also holds true for the fair 𝑘-median variant of the problem in

the following theorem.

Theorem 4.2. Suppose there is an 𝛼 approximation algorithm for
the unconstrained (no balance constraint) fair 𝑘-median problem.
Then there exists a (2𝛼, 2) bicriteria approximation for 𝐿-balanced
fair 𝑘-median problem.

We refer the reader to Appendix D.2 for the proof. Theorem 4.2

gives us an 8+𝜖 expected upper-bound to an instance of 𝐿-balanced

fair 𝑘-median problem where at most 2𝑘 centers are opened. We

assess these results in practice on the Florida and North Carolina

data in Appendix E.2.1.

4.3 Individually fair polling assignment
The algorithms discussed in sections 4.1 and 4.2 both consider a

group notion of fairness to deliver a polling place assignment with

more equitable assignments by group. But we can also investigate

the issue of inequitable distances to polling locations at an individ-
ual level with the objective that no voter is too far away from their

nearest polling place. Here, we discuss such a method to minimize

the maximum distance a voter has to travel to cast their vote us-

ing another well-known variant of the 𝑘-clustering problem called

𝑘-center. Given a set of data points and parameter 𝑘 , the objective

in the 𝑘-center problem is to select 𝑘 centers from the input and

assign each data point to one of the selected centers, so the max-

imum distance between the points and their assigned centers is

minimized, i.e. argmin𝐶∈C argmax𝑝∈𝑋 ∥𝑝 −𝐶 (𝑝)∥ where 𝑋 is the

set of data points and C is the set of all possible 𝑘-clusterings.

In our analysis we consider two variants of the 𝑘-center problem,

both with and without center load constraints. As before we assume

a uniform load requirement for each center. Our solution is similar:

we build a core-set and then use an unconstrained algorithm to

cluster the coreset. To build the coreset we use the distributed

weighted balanced 𝑘-center algorithm proposed in [40] that splits

12
This problem is also known as capacitated 𝑘-median clustering problem
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the data into chunks and runs the well-known 2-approximation due

to Gonzalez [26] to generate a coreset. Once we have collected and

weighted the coresets appropriately, we run a capacitated 𝑘-center

algorithm that is a weighted variant of the algorithm proposed

in [31]. This process has been shown to yield a 49-approximation

overall [40].

5 ALTERNATIVE SELECTION FOR POLLING
PLACES: EXPERIMENTS

We next assess the fair polling site selection methods introduced in

Section 4 to analyze the impact they could have on reducing voting

disparities in Florida and North Carolina. We evaluated these algo-

rithms based on two options for new polling locations. In the first

setting, polling places can be opened at any voter residence. This

setting is used to evaluate a best case scenario and is less realistic.
13

In the second setting, the algorithm can only select polling places

from a set containing the state’s schools, libraries, and 2020 election

polling sites. This gives a realistic bound on improvement from

better polling location placement, since schools and libraries are

often used as polling locations. The full set of numerical results

for all algorithms, including both polling selection methods, with

normalized and real valued results for each racial group, are given

in the Appendix. Here, we focus on the normalized median distance

and polling selection from school, library, and existing polling site

locations, and on the normalized site loads. Recall from Section 3

that we see this type of normalized distance as the most useful mea-

sure of voter distance access assessed. Interestingly, even though

the algorithmic guarantees and optimizations introduced in Section

4 are based on the un-normalized distances and polling site loads,

we find that the fair algorithms perform well on the normalized

measures.

The results, shown in Figure 4, show that both of the fair 𝑘-

median variants are able to achieve a median normalized distance

of 1 for all racial groups across both states. This means that the

median voter travels only as far as their closest school or library

under these fair algorithm variants. In North Carolina, the real

polling location assignments were very close to also matching this

result. However, in Florida, the new polling locations from the fair

𝑘-median variants would decrease the distance-based access dispar-

ities between groups while also decreasing these distances for all

groups. Hispanic and Black voters, who experienced the largest me-

dian normalized distance, had to travel about 25% farther than the

closest school or library under the real polling location assignments

and can have that reduced under the fair assignments. In Florida,

a 25% reduction in normalized distance translates to about half a

percent more in voter turnout, assuming that the trend observed in

Figure 3 holds. These reductions can translate into substantial dis-

tances for voters. For example, the difference between the minimum

and maximum group median distances within Glades County in

Florida is reduced from 6.26 miles in the original assignment to 1.21

miles in the assignment produced by the fair 𝑘-median algorithm.

The normalized load results demonstrate that the balanced fair

𝑘-median algorithm is the most effective at balancing the load

13
Although unusual, there are some jurisdictions that do allow residences (garages)

to be designated polling locations, precisely due to restrictions on the number of

people per precinct (which we term “load"): https://www.good.is/articles/polling-

place-garages-san-francisco

across groups, although the other methods do somewhat help to

achieve balance. We considered three different capacities for both

the balanced fair 𝑘-median and the balanced 𝑘-center algorithms.

These capacities were 1 + 𝜖 times the average number of voters

per location, where 𝜖 ∈ {0.1, 0.5, 0.9} is the control variable, and
average is determined by dividing the the total number of voters by

the total number of designated polling places. The results in Figure

4 are for 𝜖 = 0.5. Recall that this capacity choice sets the allowed

deviation from a fixed (balanced) load across polling sites. Thus,

the capacity choice impacts the number of extra polling places

opened up by the balanced fair 𝑘-median algorithm, and voter

distribution balance in the assignments produced by both balanced

fair 𝑘-median and balanced 𝑘-center algorithms. The results are

summarized in Tables 1 and 2. As expected, we see by increasing

the capacity fewer additional polling sites need to be opened for

the balanced fair 𝑘-median algorithm. For both algorithms we see

that increasing the capacity results in a larger standard deviation

of the number of voters per location, which means voters are less

evenly distributed across polling sites.

These methods have distinct strengths and weaknesses and are

suitable for different use cases. While the fair 𝑘-median algorithm

produces an assignment with more equitable distances at a group

level as well as offering shorter distances overall, it does not take

into consideration the potentially unbalanced loads at polling sites.

Still, in practice it performs well when assessing normalized load.

The 𝐿-balanced fair 𝑘-median algorithm solves this issue by in-

troducing a limit on the number of voters that can be assigned

to a single facility. Although this method may need to open up

additional polling places, this requirement could instead be used to

allocate additional resources, e.g. additional poll workers or polling

booths. The unconstrained (Appendix E.3) and balanced 𝑘-center

algorithms introduced in Section 4.3 address equitable access at an

individual level. Similar to the 𝑘-median methods, the main differ-

ence between the two is that one distributes voters evenly across

polling paces while the other does not provide such a guarantee.

The nice property of the balanced 𝑘-center algorithm is that it can

be tuned to specify exactly howmany voters above the polling place

limit could be assigned to it. However, this comes at the expense of

less competitive distances to polling sites.

6 DISCUSSION AND CONCLUSION
In this paper, we analyzed voting access disparities with respect to

polling locations. We quantified potential racial disparities in terms

of distance to nearest polling location and number of people as-

signed to a given polling location (its “load"). To account for natural

variations in population density that might give, e.g., individuals in

rural locations the expectation and means of traveling further to the

polls, we introduced a methodology using a normalized distance

based on the distance to the nearest school or library. Analyzing the

turnout of all voters across Florida and North Carolina in the 2020

U.S. general election, we found that turnout decreased as voters

had to travel further (using the normalized distance), with voters

travelling twice the distance to their nearest school or library expe-

riencing a 1-1.4% decrease in turnout relative to those who traveled

only as far as their school or library, with a five times increase

in distance leading to a turnout decrease of 2.6-2.8%. Black and
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Figure 4: Comparative results for the real polling locations (based on analysis in Section 3) and fair polling location selection
algorithms introduced in Section 4. Results are given for Florida (left) and North Carolina (right) based on normalized median
values for distances (top) and normalized polling load values (bottom). The polling selection algorithm results shown here
allow polling sites to be opened at schools or libraries. Balanced fair 𝑘-median and balanced 𝑘-center results are for capacity
parameter 𝜖 = 0.5.

Table 1: The effect of capacity in the 𝐿-balanced fair 𝑘-median algorithm on the number of newly opened polling sites and
voter distribution

Florida North Carolina

𝜖 = 0.1 𝜖 = 0.5 𝜖 = 0.9 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 0.9

Number of extra polling sites 1472 690 276 915 432 207

Mean #voters per location 2404 2854 3173 1871 2252 2487

Std. dev. of number of voters per location 1118 1378 1596 860 1106 1317

Hispanic voters had to travel farther to the polls in Florida, leading

to a decrease in turnout of 0.5% for the median distance voter.

These voting access disparity results are subject to a number of

limitations and should be seen as only the beginning of an investiga-

tion into voting access disparities. The measurement methodology

we introduce here is able to quantify (normalized) distance to the
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Table 2: The effect of capacity in the balanced 𝑘-center algorithm on voter distribution

Florida North Carolina

𝜖 = 0.1 𝜖 = 0.5 𝜖 = 0.9 𝜖 = 0.1 𝜖 = 0.5 𝜖 = 0.9

Mean #voters per location 4628 4628 4628 3561 3561 3561

Std. dev. of number of voters per location 1503 2331 2806 1255 1821 2150

nearest polling location and the polling location load, but a voter’s

experience of access to their polling location depends on many ad-

ditional factors. These include factors directly related to the polling

location (e.g., number of voting stations or machines, time to wait

in line, accessibility of the location by public transit and for voters

with disabilities) as well other societal limitations that may keep

people from the polls (e.g., availability of childcare, time off of work

to vote, voter intimidation). While distance and load may be reason-

able proxies for some of these measures, they do not capture the

full set of barriers that may prevent someone from voting. Thus,

these measures are most useful as a beginning point by identifying

racial disparities that should be addressed, and lack of identification

of such disparities in these two measures should not be considered

a sign that voting access has been equalized.

Additionally, we introduced multiple algorithmic interventions

to assign polling locations to reduce racial disparities in distance and

load. These new algorithms could allow elections officials to place

polling locations more effectively based on a given list of public

location (we use schools and libraries). However, these algorithmic

interventions focus only on polling locations and therefore ignore

other interventions that may be helpful in reducing voter access

disparities, such as arranging rides to the polls or giving workers

time off to vote. Universal vote-by-mail could be evenmore effective

at alleviating voting access disparities, as it entirely avoids the

distance and load concerns we raise here. Within existing voting

rules, the introduced algorithms demonstrate the possibility of

mitigating racial disparities in voting access.
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