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Abstract

Popular feature importance techniques compute additive approximations to nonlin-
ear models by first defining a cooperative game describing the value of different
subsets of the model’s features, then calculating the resulting game’s Shapley
values to attribute credit additively between the features. However, the specific
modeling settings in which the Shapley values are a poor approximation for the
true game have not been well-described. In this paper we utilize an interpretation
of Shapley values as the result of an orthogonal projection between vector spaces
to calculate a residual representing the kernel component of that projection. We
provide an algorithm for computing these residuals, characterize different modeling
settings based on the value of the residuals, and demonstrate that they capture infor-
mation about model predictions that Shapley values cannot. Shapley residuals can
thus act as a warning to practitioners against overestimating the degree to which
Shapley-value-based explanations give them insight into a model.

1 Introduction

There have been many recent efforts to quantify the importance of features to a model [19, 4, 1, 15,
12, 13]. Many of these determine the importance through estimating the Shapley value of a game
designed to assign importance to sets of features [4, 12, 5, 13, 14, 25]. These Shapley-value-based
feature importance methods are used widely in practice [2].

At the same time, there have been increasing concerns that these game theoretic values may not
completely capture human or technical notions of feature importance [10, 21, 24]. A particularly
salient issue is that users have misconceptions about what Shapley values represent and what ac-
tionable information can be gleaned from them [8]. Non-linear complex models, and models built
on correlated features, do not have Shapley values that can be interpreted as the effect of a direct
intervention [10], e.g., so that increasing a variable value changes the model outcome in a predictable
way. The goal of this work is to quantify the extent of these concerns and provide a theoretical
foundation for understanding the limits of Shapley values.

In this work, we introduce Shapley Residuals, vector-valued objects that capture a specific type of
quantitative information lost by Shapley values. Shapley residuals can be associated with individual
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variables, as well as with sets of variables. When the residual of a feature exhibits a large norm, the
associated Shapley value should be taken with skepticism: the resulting importance is not just due
to the variable acting by itself. On the other hand, if a residual is small, most of the effect of the
variable on the model is explainable by the variable acting independently (we make these statements
precise in Section 3). The Shapley residual, then, communicates important details about what the
explanation actually represents.

To build an intuition for why this is an important problem, consider an algorithm which makes
admissions decisions purely on the basis of gender and department: f(g, d) = g + d� 2dg, where
g = �1 if the applicant is male and g = 1 otherwise, and there are two departments, represented by
d = 1 and d = �1. In this contrived scenario, the applicant is admitted if f(g, d) > 0 (which only
happens when g and d have different signs) and is rejected otherwise. Clearly, the admissions decision
is affected by gender–yet if each of the two variables are distributed with mean 0, the KernelSHAP
values [12] which are supposed to explain the decision f(1, 1) = 0 are both 0, since to compute
the Shapley value, each features’ univariate and interaction influences are averaged together and
cancel each other out. In this way, the computation of the Shapley value has implicitly obscured a
discriminatory effect, and the corresponding nonzero Shapley residuals would demonstrate that the
Shapley values are not telling the whole story.

To more precisely describe what Shapley residuals capture, consider the following two motivating
scenarios. First, suppose a practitioner uses Shapley values to determine the effect of data interven-
tions on model outcomes. Consider two models f1 and f2. In a real-world scenario, the practitioner
will often only have black-box access to such models, and the models will often be significantly more
complex. Here, we use these simple models:

f1(x1, x2, x3) = x1 + x2 + x3

f2(x1, x2, x3) = x1 + 2x2x3

Suppose the practitioner seeks to explain the output f1(1, 1, 1) = 3 or f2(1, 1, 1) = 3, using
KernelSHAP to compute local feature importances. For both models, the Shapley values of x1,
x2, and x3 are all 1. Despite that, intervening by increasing the value of x2 changes f2 more than
increasing the value of x1; in f1, this clearly does not happen. The Shapley residuals for all variables
in f1 are zero, indicating that variables in f1 do not interact (as we prove in Section 3). The Shapley
residuals for x2 and x3 in f2, on the other hand, are nonzero, while the Shapley residual of x1 is
still zero. Finally, the Shapley residual for the set of variables {x2, x3} is also zero. As we show in
Section 3, these statements imply the following behavior for variables of f2: x1 has no interactions
with other variables (its residual is zero); x2 and x3 interact with other variables (their residuals are
non zero); x2 and x3 only interact with each other (the residual of the set {x2, x3} is zero). Thus,
access to Shapley residuals gives warning that intervening on x2 or x3 in f2 could act differently than
x1 due to an interaction between x2 and x3.

Table 1: KernelSHAP game for Example 1 - the input (1, 1, 1) to f(x1, x2, x3) = x1+2x2x3 where
xi are iid N (0, 1) features.

Hypercube v(S) Definition v(S) Value
S Coordinate for explaining (1, 1, 1) with KernelSHAP given i.i.d.

xi ⇠ N (0, 1)
; (0,0,0) E[f(x) ] 0

{x1} (1,0,0) E[f(x)|x1 = 1 ] 1
{x2} (0,1,0) E[f(x)| x2 = 1 ] 0
{x3} (0,0,1) E[f(x)| x3 = 1] 0

{x1, x2} (1,1,0) E[f(x)|x1 = 1, x2 = 1 ] 1
{x1, x3} (1,0,1) E[f(x)|x1 = 1, x3 = 1] 1
{x2, x3} (0,1,1) E[f(x)| x2 = 1, x3 = 1] 2

{x1, x2, x3} (1,1,1) E[f(x)|x1 = 1, x2 = 1, x3 = 1] 3

In the second scenario, consider a data generating distribution where ↵ controls the correlation
between two features in X and a regression target y:

(X, y) ⇠
✓
N

✓
(0, 0),


1 ↵

↵ 1

�◆
, hX, (3, 1)i

◆
.
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We examine a regression model f(x1, x2) = �1x1+�2x2 determined via linear least squares. Assume
access to infinitely many IID samples from (X, y), � = (3, 1). Suppose a practitioner wanted to
explain the output of f(1, 1) = �1 + �2, this time using Conditional Expectation SHAP [24]. The
Shapley values are �1 + ↵(�2 � �1)/2 for x1 and �2 + ↵(�1 � �2)/2 for x2. When ↵ ⇡ 0, Shapley
values correspond to model weights �1,�2, and support a (valid) interventional interpretation that
changing x1 yields a larger change to the output of f than does x2. However, if ↵ ⇡ 1, Shapley
values do not support this interpretation. A practitioner employing Shapley values alone lacks the
information to distinguish these scenarios. Shapley residuals provide useful diagnostic information;
the norm of the residuals for x1 and x2 is exactly linearly proportional to ↵.

In these simple scenarios, it is clear that Shapley residuals capture, respectively, variable interactions
and mismatches between dependent features in the data and independent variables in the model. As
we show in Section 6, these observations apply to real-world scenarios as well.

In summary, we:

• introduce Shapley residuals (Section 3), which characterize the limits of Shapley values as
explanatory mechanisms for cooperative games,

• study the properties of Shapley residuals both in general and in context of existing formula-
tions for explanatory games (Sections 3, 4 and 5),

• show via a number of experiments that Shapley residuals capture meaningful information
for model explanations in realistic scenarios (Section 6),

• discuss the limitations of Shapley residuals themselves (Section 7).

2 Background

In this section, we begin by setting up the mathematical definitions and background we’ll need for the
rest of the paper. To help illustrate these ideas, we’ll use the running example from the introduction
of function f = x1 + 2x2x3; we refer to this as Example 1. We begin by describing Shapley values
and cooperative games.

Games. A cooperative game consists of d players and a value function v : 2[d] ! R where
[d] , {1, . . . , d}. The quantity v(S) represents the value of the game for a coalition of players
S 2 N , 2[d]. Without loss of generality we will assume that v(;) = 0, and that we can identify the
game with v. Let the space of games be denoted by G.

The Shapley value is a way to fairly allocate the value of the grand coalition v([d]) among the players.
Definition 1 (Shapley values[20]). The Shapley values �i(v), i 2 [d] are the unique values satisfying
the properties

Efficiency:
Pd

i=1 �i(v) = v([d]).

Dummy: If v(S [ {i}) = v(S) for all S ⇢ [d] \ {i}, then �i(v) = 0.

Symmetry: If v(S [ {i}) = v(S [ {j}) for all S ⇢ [d] \ {i, j}, then �i(v) = �j(v).

Linearity: If v, v0 are two games on d players, then �i(↵v + ↵
0
v
0) = ↵�i(v) + ↵

0
�i(v0).

Given a model f(x1, x2, ..., xd), the features from 1 to d can be considered players in a game in
which the payoff v is some measure of the importance or influence of a subset of features. The
Shapley value �i(v) can then be viewed as a fairly attributed “influence" of i on the outcome v([d]).
In KernelSHAP, for instance, a function’s prediction on a certain input given a data distribution is
modeled as a game as shown in Table 1.

It will be useful for us to visualize a game as a function over the vertices of a d-dimensional
hypercube. Each coordinate corresponds to the presence or absence of a certain player, and each
vertex corresponds to a subset of players. Specifically, we can think of the set N as the d-dimensional
hypercube G = (V = N,E) with each vertex labeled by a set S ✓ [d] and edges between sets S and
S [ {i} for all i 2 [d], S. We depict this interpretation in Figure 1(a).
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(a) Graphical representation of v (b) Graphical representation of rv

Figure 1: Visualizing the game and gradient of the game corresponding to Example 1.

Gradients on the hypercube. Let RV be the space of functions from V to R and let RE be the
space of functions from E to R. In particular, the game v is an element of RV .

The differential operator r : RV ! RE is then defined as rv(S, S [ {i}) = v(S [ i)� v(S) for
any v 2 RV . Essentially r is a discrete gradient operator on G, mapping functions on vertices to
functions on edges (see Figure 1(b)).

We will also define a partial gradient ri : RV ! RE :

riu(S, S [ {j}) =
⇢
u(S [ j)� u(S) i = j

0 otherwise

Intuitively, ri evaluates a gradient for edges corresponding to the insertion of i, and takes the value 0
everywhere else. On the hypercube, only edges on the ith axis of riv will take a nonzero value. See
the Edge Space portion of Figure 2(a) for an illustration of this procedure on the running example.

2.1 Geometric characterization of Shapley values

A geometric interpretation of Shapley values dates back at least to Kleinberg and Weiss [9], showing
they can be expressed in terms of projections from the space of games to the space of cooperative
games with independently contributing players. A key advance was made by Stern and Tettenhorst
[22], building on earlier work by Candogan et al. [3] who proposed viewing the game as a scalar
function defined on the hypercube and studying its discrete gradient. To understand this advance, we
first introduce a special class of games.

Inessential games Let I denote the space of games v such that for all S ✓ [d], v(S) =P
i2S v({i}). I is called the space of inessential games. Intuitively an inessential game is one

in which the player interactions are simple and additive: every player adds a fixed value v({i}) to a
coalition S independent of the composition of S. Inessentiality is a key feature of what makes Shapley
values attractive for feature importance – if each contribution is fixed and combines additively, we
have a natural interpretation for how much each feature contributes to the overall model output.
Specifically, if a game is inessential, it then follows that the Shapley value for player i is v({i}). In
our running example using KernelSHAP, this is E[f(x)|xi = 1], the contribution (averaged over
other variables) of the variable xi.

In general though, a game might not be inessential. The key insight of Stern and Tettenhorst [22] was
to express inessentiality of games in terms of gradients on the hypercube.
Proposition 1 ([22, Prop 3.3]). The game v is inessential if and only if for each i 2 [d] there exists
vi 2 RV such that riv = rvi.

The main result by Stern and Tettenhorst [22] is a decomposition of an arbitrary game v into games
that are “close to being inessential” and allow extraction of Shapley values. If v is not inessential, we
cannot be sure to find vi such that riv = rvi, but we can find the “closest” such vi as the solution to
the least squares problem

min
x2RV ,x(;)=0

krx�rivk

Theorem 1 (Stern and Tettenhorst [22]). Given a game v, let vi be defined as above. Then

1.
P

vi = v
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2. If v(S [ {i}) = v(S) for all S ⇢ [d], then vi = 0

3. For any ↵,↵
0 2 R and games v, v0, (↵v + ↵

0
v
0)i = ↵vi + ↵

0
v
0
i

4. If ⇡ is a permutation of [d] and ⇡ � v is the game ⇡ � v(S) = v(⇡(S)), then (⇡ � v)i = v⇡(i)

Consider the mapping �(v)(S) =
P

i2S vi([d]). The above result implies this is a Shapley mapping
and therefore �i(v) = vi([d]) are the Shapley values of v. We illustrate the construction in Figure 2(a).

3 Shapley Residuals

The inessentiality of a game is inextricably linked to the meaningfulness of Shapley values for the
reasons given above. The idea we explore now is the converse: can the degree to which a game is not
inessential provide insights into where Shapley values are not able to capture feature influence?

By the fundamental theorem of linear algebra, we can write

riv = rvi + ri

where ri is orthogonal to rvi. This allows us to interpret ri (a vector with one value for each edge of
the hypercube) as a measure of deviation from inessentiality, because by Proposition 1, this vector is
identically 0 if and only if the game is inessential.

We can generalize these ideas further to subsets of players. We begin with a generalized notion of
inessentiality:
Definition 2. The game v is inessential relative to S if v(C) = v(S) + v(C \ S) for all S and C

such that S ⇢ C ⇢ [d].

That is, each coalition containing S obtains a value equal to the subcoalition S working separately
from C \ S; in this sense, inessentiality with respect to S can speak to the lack of interactions
between S and its complement. In addition, inessentiality relative to a single player i is the same as
inessentiality relative to the singleton set {i}.

Next, we generalize the notion of a partial derivative.
Definition 3. For a subset S ⇢ [d], let rS: RV ! RE be the operator rS =

P
i2S ri, or

rSu(C,C [ {j}) =
⇢

ru (C,C [ {i}) if i = j and i 2 S,

0 otherwise.

We can now prove a result similar to Proposition 1 for relative inessentiality.
Proposition 2. The game v is inessential relative to S if and only if there exists vS 2 RV such that
rSv = rvS .

To understand the limits of Shapley values, we propose to quantify the degree of deviation from
inessentiality with the following definition:
Definition 4 (Shapley Residuals). We call ri = riv � rvi the Shapley Residual of player i.
Analogously, rS =

P
i2S ri is the Shapley Residual of set S.

Shapley Residuals are a novel diagnostic tool for feature importance, and enjoy a number of relevant
properties.
Proposition 3. If v is inessential, then v is inessential relative to all i 2 [d] and all subsets S ⇢ [d].
If v is inessential with respect to each player of i, j, . . . z then v is inessential relative to the set
{i, j, . . . , z}.

The proof of this proposition is in the appendix. The following corollaries are straightforward.
Corollary 1. v is inessential iff ri = 0 for each i 2 [d].
Corollary 2. v is inessential relative to S iff rS =

P
i2S ri = 0.

This allows us to interpret
P

i2N ||ri||2 as the deviation from inessentiality of v and ||
P

i2S ri||2 as
the deviation from inessentiality of v relative to S.
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(a) The decomposition of a game proposed by
Stern and Tettenhorst [22]

(b) The construction of Shapley residuals

Figure 2: Visualizing the decomposition of a game and its residuals.

In this paper we will focus on the computation and evaluation of residuals with respect to individual
players i.e rS for S = {i}. Figure 2(b) illustrates the construction of residuals. Algorithm 1 describes
how to compute residuals.1

Algorithm 1 Exactly calculate the ith Shapley value and Shapley residual of v
Compute riv

Solve vi = argminx2RV ||riv �rx||22
Compute rvi

Return Shapley residual ri = riv �rvi

Return Shapley value �i = vi(S)� vi(;) where S is the set of all players

4 Feature Importance, Inessentiality and Residuals

We have established that the norm of the residual ri characterizes the degree to which the value
function v is not inessential with respect to the player i. We now show how to interpret this when
attributing feature importance via Shapley values for two popular methods. As has been noted, the
different methods for Shapley value-based explanation (whether local or global) all reduce to a specific
choice for the game v, at which point the Shapley values of v are estimated and returned [24, 10, 16].

The definitions of Shapley sampling values [23], as well as SHAP values [12], are derived from
defining v as the conditional expected model output on a data point when only the features in S

are known: v
Cond
f,x (S) = E[f(X)|XS = xS ] We call this Conditional Expectation SHAP after

Sundararajan and Najmi [24].

The Interventional SHAP value function, which defines KernelSHAP, is derived from defining v by
taking an expectation of f over the joint distribution of S̄ while fixing the feature values from S:
v
Int
f,x (S) = E[f([xS ,XS̄ ])] Notably, the two values are the same if the features in S̄ are independent

from those in S.

We will show that the residual rS captures the degree to which interactions between the features in S

and its complement arise in the model or in the data, depending on which form of Shapley-based
feature importance is used to define the value function v.

1We can take an unconstrained minimum here and subtract vi(;) at the end because adding a constant value
to v does not change rv.
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4.1 Inessentiality and Interactions

Interventional SHAP Recall the problem of explaining two models where f1(x1, x2, x3) = x1 +
x2 + x3 and f2(x1, x2, x3) = x1 + 2x2x3. Note that in the first model all three variables contribute
independently to the model output, whereas in the second model the variables x2 and x3 interact in
their contribution. We can compute the associated residuals r1, r2, r3 and their norms for these two
models. For the first one, all residuals are identically zero. However, in the second model if x2 and
x3 are nonzero for a certain input, they will have a nonzero residual. In other words, the residual
captures feature interactions in the model. Our first result, which we prove in the appendix, shows
that this intuition can be made precise.
Lemma 1. Let f : X = {X1, X2, ..., Xd} ! Y be a multivariate function. Suppose f can
be decomposed as f(x) = g(xS) + h(xS̄), for some functions g : {Xj : j 2 S} ! Y and
h : {Xj : j 62 S} ! Y . Let z = {z1, z2, ..., zn} 2 X . Then v

Int
f,z is relatively inessential with

respect to the set S.

This is important because if the model really does decompose additively for a certain variable
i, the practitioner understands what to expect when variable i is perturbed. The Interventional
Shapley residuals thus quantify the extent to which the SHAP values must be augmented with more
information to capture interaction effects in the model.

Conditional Expectation SHAP As the residual for Interventional SHAP can be thought of as
detecting feature interactions in a model, the residuals of Conditional Expectation SHAP can detect

feature interactions in the data. Let X ⇠ N ([0, 0]T ,⌃) for ⌃ =


1 ↵

↵ 1

�
, and let Y = f(X) =

�
TX (note that ordinary least squares will recover f in the limit of infinite data). Given input x1, x2,

the SHAP values of f are �1 = �1x1 + ↵
�2x1��1x2

2 �2 = �2x2 + ↵
�1x2��2x1

2 . That is to say, they
are linearly dependent on the correlation between the two variables. In particular, consider explaining
the input [1, 1] to the function x1 + 3x2; the SHAP values are �1 = 1 + ↵ and �2 = 3� ↵ and the
residuals are both 2↵. Notably, as interaction between variables increases in the data (measured by
↵), the residual increases and the SHAP values deviate further and further from the coefficients of the
actual model. We can make this intuition precise.
Lemma 2. Let f : X = {X1, X2, ..., Xd} ! Y be a multivariate function. Suppose f can
be decomposed as f(x) = g(xS) + h(xS̄), for some functions g : {Xj : j 2 S} ! Y and
h : {Xj : j 62 S} ! Y . Let z = {z1, z2, ..., zn} 2 X . Suppose further that all Xj : j 2 S are
distributed independently from all Xj : j 62 S. Then v

Cond
f,z is relatively inessential with respect to set

S.

The residual on Conditional Expectation SHAP thus quantifies the extent to which an interpretation
of the SHAP values can be interpreted as interventional, because depending on the causal structure of
the data, correlated features could imply that perturbing a feature i could result in the perturbation of
a different feature as well.

Inspecting Shapley residuals in practice Shapley residuals are vectors in the same space as
gradients, and are generally high-dimensional entities; a full study of their properties remains an
important topic for future work. The characterization in this section shows that the norm of the
residual vectors captures important limitations of Shapley values. Thus, our experiments use the
scaled norm of the residual vectors, defined to be the norm of the residual vector divided by the
norm of the discrete gradient vector. Normalized residuals make them easier to compare across
experiments.

5 Relationship with Other Interaction Indices

[25], similarly recognizing that Shapley values lose information about interactions, proposed Shapley-
Taylor Interaction Indices, a generalization of Shapley values which attributes influence among
interaction terms. Specifically, the Shapley-Taylor explanation for x of order k assigns values IkS to
subsets of features S of size |S|  k such that

P
I
k
S = f(x). The terms for the subsets for which

|S| < k represent a discrete Taylor series around v(;). When |S| = k, IkS is defined similarly to the
Shapley value: a discrete derivative averaged over permutations.
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Our residuals capture fundamentally different information about interactions than Shapley-Taylor.
Consider some subset S for which |S| < k. Our residual rS is 0 when the marginal value of adding
S to a coalition W is constant with respect to sets for which W \ S = ;; in other words, it is about
the presence or absence of interactions of S with other variables. The Shapley-Taylor interaction
index I

k
S , on the other hand, is 0 when v(S) can be inferred from the values of v(W ) for {W ⇢ S}.

The Taylor terms of the Shapley-Taylor explanation thus capture information about how the players
in S interact with each other when no other variables are involved. For instance, if for a certain game
v({i}) + v({j}) = v({i, j}), this means that the term v({i, j}) provides no interaction information
about the two players, and I

k
{i,j} for explanation sizes k > 2 will be 0.

However, the Taylor indices for a coalition S say nothing about whether the variables within S

interact once a player outside of S is involved. Consider a three-player game between a, b, and c,
where v({a}) + v({b}) = v({a, b}) and v({a}) + v({c}) = v({a, c}); this would make I

k
{a,b} and

I
k
{a,c} equal to 0, implying that a and b do not interact, and a and c do not interact. But it could be that
v is not relatively inessential with respect to a. If v({a, b, c})� v({b, c}) 6= v({a, c})� v({c}), then
a’s relative contribution with respect to c changes once b is involved. This constitutes an interaction
between a and c that is not described by the Shapley-Taylor index for {a, c}, but is rather captured by
the third-order interaction of {a, b, c}. In this scenario, our residuals would show ra 6= 0, alerting us
to the fact that a interacts with {b, c}; additionally, it would have r{a,b} 6= 0, alerting us to the fact
that {a, b} interacts with c.

In general, since ri captures information about all of i’s interactions, we can state the following
connection between the two Shapley extensions:
Lemma 3. Given subset S, |S| < k, if 9i 2 S s.t ri = 0, then the Shapley-Taylor index I

k
S = 0.

We have focused our attention on Shapley-Taylor interaction indices because of their proposed use for
explanations. It should be noted that they (as well as the Shapley interaction index proposed in [13])
are special cases of a general class of interaction indexes investigated in a long line of work starting
with [17] and surveyed in [6] (including the Grabisch-Roubens[7] Shapley and Banzhaf interaction
indices). All of these differ from Shapley residuals – the latter are meant to represent the information
lost when computing singleton Shapley values, not their higher-dimensional extensions, which are
based on a different notion of a derivative.

6 Experiments

Having theoretically justified Shapley residuals in previous sections, we now focus on illustrating
what these residuals can help us understand about models on a real-world dataset. Throughout, we
use our own implementation of KernelSHAP to calculate the exact Shapley values and residuals (see
Algorithm 1 in Section 3).2 Some additional experiments can be found in the appendix.

On comparisons to other feature importance methods We note that Shapley residuals are not a
feature importance evaluation method, nor are they an “explanation method" in and of themselves.
Rather, they are a quantification of the (valuable) information lost by Shapley values. A direct
comparison of different feature influence evaluation methods makes sense when there is a clear
objective to compare against. Such an objective doesn’t really exist here. Rather, we choose to
provide an internal validation that lays out the mathematical foundation on which the method rests.
This allows a user to decide the context in which to employ one method or another. For example, as
we discussed in Section 5, Shapley-Taylor indices and Shapley residuals appear to capture different
kinds of interactions that are potentially of interest to a user. There is no meaningful way to compare
them in a vacuum because one is not "better" than another.

Variable Interactions in Occupancy Detection Consider the Shapley values and residuals for an
occupancy detection dataset3 (20,560 instances) used to predict whether an office room is occupied.
The 7 attributes include a date stamp for an hour and day of the week. A decision tree model
with maximum depth 3 is trained on 75% of the data using the features light and hour. When

2Code is provided in the supplementary material
3https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
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(a) KernelSHAP values (b) KernelSHAP scaled residual
norms

(c) KernelSHAP sampling for
(10,320)

Figure 3: Shapley values and residuals on a decision tree for the Occupancy Detection task

evaluated on the remaining test set, the ROC-AUC for this decision tree is 0.991. We then calculate
the Shapley values and residuals (using 50 randomly sampled background rows from the test set) for
1000 randomly sampled test instances. The results for the variable “light" are shown in Figure 3.

The reason that the cluster of points in the middle has a high residual is illustrated in Figure 3(c).
Calculating the expected prediction while fixing a light value of 320, unlike most other possible
values, results in a mix of low and high predictions. These average to 0.4, while both the overall
expectation and particular prediction for occupancy probability for those points are 0.25.

E[f(H,L)] = .24 E[f(10, L)] = .25

E[f(H, 320)] = .40 f(10, 320) = .01

+.01

+.16 �.24

�.39

Figure 4: Geometric representation of the KernelSHAP game for f(10, 320), where arrows to the
right indicate inclusion of the light feature and arrows down indicate inclusion of the hour feature.

Specifically, the KernelSHAP game for f(H,L) = P (occupant = T ) for L = 320 and H = 10 is
shown in Figure 4. L = 320 is a positive indicator of occupancy if H is unknown (+.16) but is a
“negative” indicator of occupancy is H is known to be 10 (-.24), due to the interactions in the model
in this area of the feature space. The light Shapley value is close to 0 for points in this range, then,
because it is the average of a positive and negative number – not because it is of “low importance” –
and the non-inessentiality of this feature is what is being captured by the residual.

7 Limitations and Future Work

Usability considerations Our motivation for this work is to contribute further to the theoretical
foundation of Shapley-value-based feature importance measures and, critically, to introduce Shapley
residuals to quantify missing importance. Our goal is that residuals be a warning attached to specific
Shapley values and thus alert practitioners to model complexities and importances that have previously
gone unattended. Further research is needed to investigate whether these residuals can be effectively
utilized by humans to make better decisions about their models. An empirical, human-centered
investigation is critical because, like Shapley values themselves, the meaning of these residuals may
be hard for practitioners to understand, and therefore errors in the interpretation of these residuals
may cause unanticipated negative consequences.

Performance considerations SHAP implementations provide a partial evaluation of the game
vector [12, 11], which provides analysts with results even in high-dimensional settings. Unfortunately,
there is no assumption-free provable bound on the relationship between partially evaluated game
vectors and actual Shapley values. Our goal here is more precisely characterize the information
not conveyed by Shapley values and so we always compute the full vector. Thus, the runtime is
ultimately exponential in the number of variables to analyze. This currently limits the number of
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variables for which Shapley residuals can be practically computed to 20 to 30 (with corresponding
vectors of length between a million and a billion elements). Since the derivative operator is sparse and
well-conditioned, the least squares problem is efficiently solved by the LSQR method [18]. Still, in
future work, we hope to efficiently identify whether a particular residual is nonzero, and approximate
properties of residuals which capture the entirety of non-linear interactions of a particular feature.

Conclusion A goal in interpretable machine learning, and within Shapley-value-based feature
importance, is to give a rigorous theoretical foundation to interpretability notions so that practitioners
can better understand the impacts of their models. This is especially important in contexts where
models make high-stakes decisions about people, e.g., via criminal risk assessments and interview
screening algorithms. We believe people have the right to understand those decisions, and particularly
which features were important for the decision. Putting such feature importance measurements on
solid theoretical grounds is important for the validity of these feature importance claims. Their
validity is an important part of the ethics of algorithms as societal interventions.
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