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Motivation 



Motivation 
  Computer Science 

  Graphics: Image / video segmentation and compression 
  Databases: Maintenance over time 
  Sensor Networks: Data analysis 
  Cell phone users: Motion data analysis 

  4.6 billion subscribers worldwide (in 2009) 
  4.1 billion text messages per day in the US (in 2009) 

  Biology 
  Mathematical ecology: Migratory paths, invasive species 
  Genomic data analysis: HIV strain analysis 

  Engineering 
  Traffic patterns and identification 



Outline 
  Kinetic Robust K-Center 

  Sensor-Based Framework 

 Kinetic Data Compression 

  Realistic Issues in Kinetic 
 Sensor Data Compression 

  Spatio-temporal  
 Range Searching 
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Kinetic Robust K-Center 
Problem 



Existing Frameworks for Kinetic Data 
  Atallah (1983) 

  Polynomial motion of degree k 
  Motion known in advance 
  Points lie in Rd  
  Analysis in Rd+1  

  Kahan (1991) 
  Bounds on point velocity 
  Update function provided 
  Limit queries to function 

  Kinetic Data Structures  
 (Basch, Guibas, Hershberger 1997) 
  Points have flight plans (algebraic expressions) that can 

change 
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Kinetic, Robust, K-Center Problem 
  k-center problem: choose k centers that 

minimize the maximum distance from any point 
to its closest center 

  robust k-center problem: allow a fraction (1-t) of 
the points to remain unclustered 



Results 
  Discrete: centers taken from input 
  Absolute: centers any point in space 

  (3+ε)-approximation algorithm for discrete k-
center 
  Improves Gao et al. 8-approximation 

  Close to Charikar et al. 3-approximation 

  (4+ε)-approximation algorithm for absolute k-
center 
  First absolute solution 

  Efficient by kinetic data structure standards 



A Sensor-Based 
Framework for  

Kinetic Data Compression 



Existing Frameworks for Sensor Data 
  Gandhi, Kumar, Suri (2008) 

  Sensors can count objects within their detection 
region 

  Guitton, Skordylis, Trigoni (2007) 
  Sensors can calculate traffic flow (cars/time), 

occupancy (cars/area) 

  Kastrinaki (2003 Survey) 
  Sensors can calculate object speed, change in angle, 

etc 



Motivation 
  Develop a framework for kinetic data from 

sensors  
  No advance object motion knowledge 

  No restrictions on object motion 
  Reasonable assumptions of what a sensor can know 

  Efficiency analysis that is motion sensitive 



Our Framework 
  Detection region around each sensor (stationary 

sensors) 
  Point motion unrestricted 

  No advance knowledge about motion 
  Each sensor reports the count of points within 

its region at each synchronized time step 
  k-local: Sensor outputs statistically only 

dependent on k nearest neighbors 

sensor 
balls 



Data Collection 

X1 X2 X3 X4 X5 

1 0 0 0 0 1 
2 

4 
3 

5 

2 0 0 0 0 

2 1 0 0 0 

0 2 0 0 0 

0 0 0 1 0 

0 0 1 1 0 

time 

Sensor data streams 
Data based on underlying 
geometric motion 



Motivation: Data Compression  
  Kinetic data: data 

generated by moving 
objects 

  Sensors collect data 
  Large amounts of data 
  Want to analyze it later 
  Don’t know what 

questions we’ll want to 
ask in advance 

  Next: Lossless data 
compression 

  Later: Retrieval 



Entropy 
Consider the string generated by a random 

process… 

  Entropy:  The information content of a string or 
a measurement of the predictability of the 
random process 

  -Σx pr(x) log pr(x) 
  Example:  A weighted coin that’s always heads vs. a 

normal coin: 

  -(1 log 1) = 0  vs.  -(½ log ½ + ½ log ½) = 1 



Entropy Generalizations 
  Joint entropy:  The entropy for joint 

probabilities of a set of events occurring 
  Normalized entropy: bits to encode each 

character, entropy/n for strings of length n 

  Joint entropy chain rule ( X = {X1, X2, … , XS} ):  
  H(X) = H(X1)+H(X2|X1)+…+H(XS|X1,…,XS-1)  

  k-local entropy (Hk): normalized joint entropy of 
a set of streams that are only dependent on up 
to k streams from their k nearest neighbors    



Finding a Data Compression Algorithm 
Goal: smallest lossless encoding of sensor data 

  Optimal: encoded (set) length = underlying (joint) entropy 

  Idea 1: compress all strings separately 
  Not optimal 

  Idea 2: compress all strings together 
  Window size needed for repetition too large to be 

practical 

Optimal encoded sensor stream length: H(X) = Hk(X) 
  Key: compress statistically dependent 
    strings together – want groups of k strings 



Data Compression Algorithm: 
Partitioning Lemma 

  k-clusterable:  A point set that can be clustered 
into subsets of size at most k+1 so that if p and 
q are among each other’s k nearest neighbors 
then they are in the same cluster. 

 2-clusterable example 



Data Compression Algorithm: 
Partitioning Lemma 

  k-clusterable:  A point set that can be clustered 
into subsets of size at most k+1 so that if p and 
q are among each other’s k nearest neighbors 
then they are in the same cluster. 

not 2-clusterable example 

 0        1       2       3       4        5        6       7 



Data Compression Algorithm: 
Partitioning Lemma 

  Lemma:  There exists an integral 
constant c such that for all k>0 
any point set can be partitioned 
into c partitions that are each k-
clusterable.    



Data Compression Algorithm 
  Partition and cluster the sensors, then compress 

    for each partition Pi 

       for each cluster in Pi 
          combine the cluster’s streams into one with longer 

  characters and compress it 
    return the union of the compressed streams 

1120… 
1003… 

2201… 

(112)(102)(200)(031)… 



Data Compression Algorithm 
  Proof Sketch: 

  The joint entropy of the streams is the optimal 
length 
  Recall:  H(X) = Hk(X) 

  Sensor outputs are k-local, so each compressed 
partition is the optimal length: 
 statistically dependent streams are compressed 
together 

  There are c partitions, so the total length is c times 
optimal 
  c is O(1)  



Realistic Issues in 
Compression of  

Kinetic Sensor Data 



Two Main Issues and Solutions 

Entropy 

  Shannon Entropy 
  assumes an 

underlying random 
process 

  bounds hold in the 
limit 

  Empirical Entropy 
  relies on observed 

probabilities 

  Independence 
  strict independence 

ignores systemic 
patterns 

  δ-Independence 
  allows limited 

underlying 
dependence between 
sensor outputs 

Independence 



Analysis of Compression Algorithm 

Statistical and Empirical Settings 

Strict Independence 

  O(Sopt(X)) 

δ-Independence 

O( max {δT, Sopt(X,δ)} ) 

  X: set of sensor system observations 
  T: length of observed time period 
 δ: independence parameter 
  Sopt(X): optimal encoding space size for X 



Locality Experiments 
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Spatio-temporal  
Range Searching over 

Compressed 
Kinetic Sensor Data 



Motivation: Data Retrieval  
  Kinetic data: data 

generated by moving 
objects 

  Sensors collect data 
  Large amounts of data 
  Want to analyze it later 
  Don’t know what 

questions we’ll want to 
ask in advance 

  Done: Lossless data 
compression 

  Next: Retrieval without 
decompressing data 



Range Searching: Our Problem 
Compress and preprocess the data so as to perform… 

  Temporal range query:  Given a time interval, 
return an aggregation of the counts over that time 
interval. 

  Spatio-temporal range query:  Given a time interval 
and spherical spatial region, return an aggregation 
of the counts over that time interval and within that 
region.        

t:  1 2 3 4 5 6 7 8 9 10 11 
X: 0,0,4,4,5,4,3,3,1,  1,  0 

17 
aggregation type: sum 

00110123… 

00223101… 

11122021… 

aggregation type: sum 

4 + 6 = 10 



Lempel-Ziv Dictionary Compression [LZ78] 

 11121222121221 

Create a trie while scanning through a string. 
The compressed string contains pointers to this 
dictionary. 

(LZ78 is an optimal entropy encoding algorithm.) 

1 2 
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Temporal Range Searching 

  Create trie with 
accompanying pointers 

  Annotate trie with aggregate 
values and word start times 

  Given a temporal range  
 [t0, t1] find the anchor points 
$0 and $1 such that $0≤t0 
and $1≥t1  (binary search) 

  Use stored prefixes, words, 
and subtraction of prefixes 
to find aggregates 

Query Examples 4 

2 

4 

2 

1 

3 

5 

7 

4 

12 

5 

1 

2 

9 
overlapping query: [4,7] 

 2 + 3 + 2 = 7 
internal query: [10,10] 

 3 - 1 = 2 

1 11 2 12 22 121 221 

 $1   $2 $3  $4    $5     $6     $7 

aggregate values        word start times 

Encoded String 

   1  2    4  5    7    9      12           
time 



Sensor Clumps 
  Recall: The sensors are 

partitioned, clustered, and 
compressed 

  Set of clumps:  A finite set 
of balls with a packing 
property limiting the 
number of intersections of 
any ball with a clump.   

  Lemma: In a single 
partition, the nearest 
neighbor balls form a set 
of clumps that contain the 
sensor clusters 



Range Searching Among Clumps 

  Range Searching 
Among Clumps:  
Given any query 
range R and using a 
quadtree variant, we 
can report 
  a subset of clump 

subsets that form a 
disjoint cover of the 
clumps within R 

  the subset of clumps 
that R intersects 

  Lemma:  A quadtree 
variant based data 
structure can answer 
range searching queries 
among clumps. 



Spatio-temporal Range Searching 
  Main Theorem: By 

adding an auxiliary 
data structure to 
answer temporal range 
queries to each node in 
the range searching 
among clumps solution 
we can answer spatio-
temporal range queries.  

  One range searching 
among clumps 
structure for each 
partition 

  One temporal range 
structure for each 
clump and each 
internal quadtree node 

  Get temporal sums for 
each clump and 
overlapped sensor 

  Sum over all partitions 
1112… 



Results 

  X:  The set of sensor system observations 
  Enc(X):  The encoded size (in bits) of the compressed data 
  T:  The total time over which data was collected 
  S:  The total number of sensors 
  d:  The dimension of the sensor space 
  ε:  An error parameter (for approximate range searching) 

First range searching bounds over compressed data  



Experimental Results: Space 
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C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues.   
The MERL motion detector dataset: 2007 workshop on massive datasets.   
Technical Report TR 2007-069,  
Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007. 



Experimental Results: Time 
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C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues.   
The MERL motion detector dataset: 2007 workshop on massive datasets.   
Technical Report TR 2007-069,  
Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007. 



Conclusions  
and Open Problems 



Results 
  Robust clustering within the KDS model 
  Framework for kinetic sensor data 

  No assumptions about object motion or advance 
knowledge 

  Lossless compression algorithm that takes 
space O(optimal)  

  Realistic analysis to consider empirical entropy 
and a limited notion of independence 

  Spatio-temporal range searching over 
compressed kinetic sensor data 

  Experimental analyses of locality, space, and 
query time 



Spatio-temporal k-Center Problem 
  X = {X1, …, XS} 
  Xi = Xi1,…,Xij, … , XiT 

  Assign counts to k 
clusters Cij1, …, Cijk 
such that for all 
sensors and times i,j 
  Σl Cijl = Xij 

  Minimize the 
maximum Hτ(X) over 
all Cl = {Cijl}j  

simulation by the UNC collision avoidance team 



Future Work: Understanding Motion 

Practical 

  Relies on reasonable 
assumptions about 
motion, data, 
observations, etc. 

  Reasonable to code 
and develop 
algorithms 

  Algorithm analyses 
that are motion-
sensitive 

  Allowance for both 
exact theoretical 
descriptions of 
motion and 
observations 

Theoretical 



Thank you! 
Questions? 


